Effects of Diuretics on Urinary Proteins

  • Xundou LiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 845)


Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including diuretics, careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. The human orthologs of most of these 14 proteins affected are stable in the healthy human urinary proteome, and 10 of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics.


Diuretics Urine proteome 


  1. 1.
    Gao Y (2013) Can urine be the gold mine for biomarker discovery? Sci China Life Sci 56. doi: 10.1360/052013-157
  2. 2.
    Jia L, Liu X, Liu L, Li M, Gao Y (2014) Urimem, a membrane that can store urinary proteins simply and economically, makes the large-scale storage of clinical samples possible. Sci China Life Sci 57(3):336–339 Google Scholar
  3. 3.
    Shao C, Li M, Li X, Wei L, Zhu L et al (2011) A tool for biomarker discovery in the urinary proteome: a manually curated human and animal urine protein biomarker database. Mol Cell Proteomics 10(M111):010975PubMedGoogle Scholar
  4. 4.
    Rosner MH (2009) Urinary biomarkers for the detection of renal injury. Adv Clin Chem 49:73–97PubMedCrossRefGoogle Scholar
  5. 5.
    Vrooman OP, Witjes JA (2008) Urinary markers in bladder cancer. Eur Urol 53:909–916PubMedCrossRefGoogle Scholar
  6. 6.
    Montagut C, Albanell J, Bellmunt J (2008) Prostate cancer: Multidisciplinary approach: a key to success. Crit Rev Oncol Hematol 68(1):S32–36Google Scholar
  7. 7.
    Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M et al (2008) Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics 7:290–298PubMedCrossRefGoogle Scholar
  8. 8.
    Mullen W, Gonzalez J, Siwy J, Franke J, Sattar N et al (2011) A pilot study on the effect of short-term consumption of a polyphenol rich drink on biomarkers of coronary artery disease defined by urinary proteomics. J Agric Food Chem 59:12850–12857PubMedCrossRefGoogle Scholar
  9. 9.
    Kohler M, Franz S, Regeniter A, Ikonen A, Walpurgis K et al (2009) Comparison of the urinary protein patterns of athletes by 2D-gel electrophoresis and mass spectrometry-a pilot study. Drug Test Anal 1:382–386PubMedCrossRefGoogle Scholar
  10. 10.
    Kohler M, Walpurgis K, Thomas A, de Maree M, Mester J et al (2010) Effects of endurance exercise on the urinary proteome analyzed by 2-D PAGE and Orbitrap MS. Proteomics Clin Appl 4:568–576PubMedGoogle Scholar
  11. 11.
    Airoldi L, Magagnotti C, Iannuzzi AR, Marelli C, Bagnati R et al (2009) Effects of cigarette smoking on the human urinary proteome. Biochem Biophys Res Commun 381:397–402PubMedCrossRefGoogle Scholar
  12. 12.
    Li Y, Fu C, Zhou X, Xiao Z, Zhu X et al (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27:851–860PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Doi K, Katagiri D, Negishi K, Hasegawa S, Hamasaki Y, et al (2012) Mild elevation of urinary biomarkers in prerenal acute kidney injury. Kidney Int 82:1114–1120Google Scholar
  14. 14.
    Jin J, Ku YH, Kim Y, Kim K, Lee JY et al (2012) Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients. Exp Diabetes Res 2012:168602PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Reddy P, Mooradian AD (2009) Diuretics: an update on the pharmacology and clinical uses. Am J Ther 16:74–85PubMedCrossRefGoogle Scholar
  16. 16.
    Li X, Zhao M, Li M, Jia L, Gao Y (2014) Effects of three commonly-used diuretics on the urinary proteome. Genomics Proteomics Bioinform 12(3):120–126Google Scholar
  17. 17.
    Wile D (2012) Diuretics: a review. Ann Clin Biochem 49:419–431PubMedCrossRefGoogle Scholar
  18. 18.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362PubMedCrossRefGoogle Scholar
  19. 19.
    Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338PubMedCrossRefGoogle Scholar
  20. 20.
    Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314:1041–1052PubMedCrossRefGoogle Scholar
  21. 21.
    Shaye DD, Greenwald I (2011) OrthoList: a compendium of C elegans genes with human orthologs. PLoS ONE 6:e20085PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nagaraj N, Mann M (2011) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 10:637–645PubMedCrossRefGoogle Scholar
  23. 23.
    Sun W, Chen Y, Li F, Zhang L, Yang R et al (2009) Dynamic urinary proteomic analysis reveals stable proteins to be potential biomarkers. Proteomics Clin Appl 3Google Scholar
  24. 24.
    Wang Y, Chen Y, Zhang Y, Wu S, Ma S et al (2008) Differential ConA-enriched urinary proteome in rat experimental glomerular diseases. Biochem Biophys Res Commun 371:385–390PubMedCrossRefGoogle Scholar
  25. 25.
    Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A et al (2010) A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 28:486–494PubMedCrossRefGoogle Scholar
  26. 26.
    Hoffmann D, Fuchs TC, Henzler T, Matheis KA, Herget T et al (2010) Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology 277:49–58PubMedCrossRefGoogle Scholar
  27. 27.
    Rouse RL, Zhang J, Stewart SR, Rosenzweig BA, Espandiari P et al (2011) Comparative profile of commercially available urinary biomarkers in preclinical drug-induced kidney injury and recovery in rats. Kidney Int 79:1186–1197PubMedCrossRefGoogle Scholar
  28. 28.
    Fuchs TC, Frick K, Emde B, Czasch S, von Landenberg F et al (2012) Evaluation of novel acute urinary rat kidney toxicity biomarker for subacute toxicity studies in preclinical trials. Toxicol Pathol 40:1031–1048PubMedCrossRefGoogle Scholar
  29. 29.
    Kentsis A, Lin YY, Kurek K, Calicchio M, Wang YY et al (2010) Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry. Ann Emerg Med 55(1):62–70 e64PubMedCrossRefGoogle Scholar
  30. 30.
    Malard V, Gaillard JC, Berenguer F, Sage N, Quemeneur E (2009) Urine proteomic profiling of uranium nephrotoxicity. Biochim Biophys Acta 1794:882–891PubMedCrossRefGoogle Scholar
  31. 31.
    Li H, Li C, Wu H, Zhang T, Wang J et al (2011) Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma. Proteome Sci 9:21PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zager RA, Vijayan A, Johnson AC (2012) Proximal tubule haptoglobin gene activation is an integral component of the acute kidney injury “stress response”. Am J Physiol Renal Physiol 303:F139–F148PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Riaz S, Alam SS, Srai SK, Skinner V, Riaz A et al (2010) Proteomic identification of human urinary biomarkers in diabetes mellitus type 2. Diabetes Technol Ther 12:979–988PubMedCrossRefGoogle Scholar
  34. 34.
    Jiang H, Guan G, Zhang R, Liu G, Cheng J et al (2009) Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes Metab Res Rev 25:232–241PubMedCrossRefGoogle Scholar
  35. 35.
    Bhensdadia NM, Hunt KJ, Lopes-Virella MF, Michael Tucker J, Mataria MR et al (2013) Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney Int 83(6):1136–1143Google Scholar
  36. 36.
    Cutillas PR, Chalkley RJ, Hansen KC, Cramer R, Norden AG et al (2004) The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol 287:F353–F364PubMedCrossRefGoogle Scholar
  37. 37.
    Lemberger SI, Dorsch R, Hauck SM, Amann B, Hirmer S et al (2011) Decrease of trefoil factor 2 in cats with feline idiopathic cystitis. BJU Int 107:670–677PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical SciencesChinese Academy of Medical Sciences/School of Basic MedicineBeijingChina

Personalised recommendations