Advertisement

Hormone-Dependent Changes in Female Urinary Proteome

  • Annalisa Castagna
  • Sarath Kiran Channavajjhala
  • Francesca Pizzolo
  • Oliviero OlivieriEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 845)

Abstract

Human urine represents a good source for proteomic research for clinically related studies as it can be collected and processed easily and can give information about kidney-related mechanisms. Little is known about the urinary proteomic changes resulting from physiological (normal), pathological, or environmental variations, and there are few reports on hormone-related modifications of urine proteome. In our study, we highlighted the variations of urinary proteins associated with menstrual cycle or estro-progestin pill in females. We also described an association between some urinary proteins and the renin–angiotensin–aldosterone system, which might help to improve the understanding of physiological and pathological processes when a gender-specific pattern such as the menopause-related hypertension or eclampsia is evident. We therefore support the usefulness of urinary proteomics as a valuable tool for clinically related study as it can provide information on candidate biomarkers which, in turn, need to be confirmed by multiple approaches before the use in a clinical setting.

Keywords

Urinary proteomics Female hormones Hypertension Renin–angiotensin–aldosterone system 

References

  1. 1.
    Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594PubMedCrossRefGoogle Scholar
  2. 2.
    August P (2013) Hypertension in women. Adv chronic kidney dis 20:396–401PubMedCrossRefGoogle Scholar
  3. 3.
    Bakun M, Senatorski G, Rubel T, Lukasik A, Zielenkiewicz P, Dadlez M, Paczek L (2014) Urine proteomes of healthy aging humans reveal extracellular matrix (ECM) alterations and immune system dysfunction. Age 36:299–311PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Buhimschi IA, Zhao G, Funai EF, Harris N, Sasson IE, Bernstein IM, Saade GR, Buhimschi CS (2008) Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 199(551):516–e551Google Scholar
  5. 5.
    Carty DM, Siwy J, Brennand JE, Zurbig P, Mullen W, Franke J, McCulloch JW, Roberts CT, North RA, Chappell LC, Mischak H, Poston L, Dominiczak AF, Delles C (2011) Urinary proteomics for prediction of preeclampsia. Hypertens 57:561–569CrossRefGoogle Scholar
  6. 6.
    Castagna A, Olivieri O, Milli A, Dal Bosco M, Timperio AM, Zolla L, Gunasekaran M, Raffaelli R, Pizzolo F, Cecconi D (2011) Female urinary proteomics: new insight into exogenous and physiological hormone-dependent changes. Proteomics Clin Appl 5:343–353PubMedCrossRefGoogle Scholar
  7. 7.
    Chen G, Zhang Y, Jin X, Zhang L, Zhou Y, Niu J, Chen J, Gu Y (2011) Urinary proteomics analysis for renal injury in hypertensive disorders of pregnancy with iTRAQ labeling and LC-MS/MS. Proteomics Clin Appl 5:300–310PubMedCrossRefGoogle Scholar
  8. 8.
    Chengalvala MV, Meade EH Jr, Cottom JE, Hoffman WH, Shanno LK, Wu MM, Kopf GS, Shen ES (2006) Regulation of female fertility and identification of future contraceptive targets. Curr Pharm Des 12:3915–3928PubMedCrossRefGoogle Scholar
  9. 9.
    Decramer S, de Peredo AG, Breuil B, Mischak H, Monsarrat B, Bascands JL, Schanstra JP (2008) Urine in clinical proteomics. Mol Cell Proteomics 7:1850–1862PubMedCrossRefGoogle Scholar
  10. 10.
    Fardella CE, Mosso L, Gomez-Sanchez C, Cortes P, Soto J, Gomez L, Pinto M, Huete A, Oestreicher E, Foradori A, Montero J (2000) Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology. J Clin Endocrinology Metab 85:1863–1867Google Scholar
  11. 11.
    Froehlich JW, Vaezzadeh AR, Kirchner M, Briscoe AC, Hofmann O, Hide W, Steen H, Lee RS (2013) An in-depth comparison of the male pediatric and adult urinary proteomes. Biochim Biophys Acta 1844(5):1044–1050PubMedCrossRefGoogle Scholar
  12. 12.
    Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, Young WF Jr, Montori VM, Endocrine S (2008) Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:3266–3281PubMedCrossRefGoogle Scholar
  13. 13.
    Heo SH, Choi JH, Kim YM, Jung CW, Lee J, Jin HY, Kim GH, Lee BH, Shin CH, Yoo HW (2013) Comparative proteomic analysis in children with idiopathic short stature (ISS) before and after short-term recombinant human growth hormone (rhGH) therapy. Proteomics 13:1211–1219PubMedCrossRefGoogle Scholar
  14. 14.
    Hugon-Rodin J, Chabbert-Buffet N, Bouchard P (2010) The future of women’s contraception: stakes and modalities. Ann N Y Acad Sci 1205:230–239PubMedCrossRefGoogle Scholar
  15. 15.
    Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovski G, Novak J (2009) Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin Appl 3:1029–1043PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Khan A, Packer NH (2006) Simple urinary sample preparation for proteomic analysis. J Proteome Res 5:2824–2838PubMedCrossRefGoogle Scholar
  17. 17.
    Koda A, Wakida N, Toriyama K, Yamamoto K, Iijima H, Tomita K, Kitamura K (2009) Urinary prostasin in humans: relationships among prostasin, aldosterone and epithelial sodium channel activity. Hypertens Res: Official J Jpn Soc Hypertens 32:276–281CrossRefGoogle Scholar
  18. 18.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  19. 19.
    Lee RS, Monigatti F, Briscoe AC, Waldon Z, Freeman MR, Steen H (2008) Optimizing sample handling for urinary proteomics. J Proteome Res 7:4022–4030PubMedCrossRefGoogle Scholar
  20. 20.
    Lee SM, Park JS, Norwitz ER, Kim SM, Kim BJ, Park CW, Jun JK, Syn HC (2011) Characterization of discriminatory urinary proteomic biomarkers for severe preeclampsia using SELDI-TOF mass spectrometry. J Perinat Med 39:391–396PubMedCrossRefGoogle Scholar
  21. 21.
    Ma XJ, Fu YY, Li YX, Chen LM, Chai K, Wang YL (2009) Prostasin inhibits cell invasion in human choriocarcinomal JEG-3 cells. Histochem Cell Biol 132:639–646PubMedCrossRefGoogle Scholar
  22. 22.
    Odet F, Verot A, Le Magueresse-Battistoni B (2006) The mouse testis is the source of various serine proteases and serine proteinase inhibitors (SERPINs): serine proteases and SERPINs identified in Leydig cells are under gonadotropin regulation. Endocrinology 147:4374–4383PubMedCrossRefGoogle Scholar
  23. 23.
    Oelkers WK (1996) Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids 61:166–171PubMedCrossRefGoogle Scholar
  24. 24.
    Olivieri O, Castagna A, Guarini P, Chiecchi L, Sabaini G, Pizzolo F, Corrocher R, Righetti PG (2005) Urinary prostasin: a candidate marker of epithelial sodium channel activation in humans. Hypertension 46:683–688PubMedCrossRefGoogle Scholar
  25. 25.
    Olivieri O, Chiecchi L, Pizzolo F, Castagna A, Raffaelli R, Gunasekaran M, Guarini P, Consoli L, Salvagno G, Kitamura K (2013) Urinary prostasin in normotensive individuals: correlation with the aldosterone to renin ratio and urinary sodium. Hypertens Res: Official J Jpn Soc Hypertens 36:528–533CrossRefGoogle Scholar
  26. 26.
    Pizzolo F, Raffaelli R, Memmo A et al (2010) Effects of female sex hormones and contraceptive pill on the diagnostic work-up for primary aldosteronism. J Hypertens 28:135–42Google Scholar
  27. 27.
    Qi Y, Li P, Zhang Y, Cui L, Guo Z, Xie G, Su M, Li X, Zheng X, Qiu Y, Liu Y, Zhao A, Jia W, Jia W (2012) Urinary metabolite markers of precocious puberty. Mol Cell Proteomics 11:M111–011072PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Romero DG, Plonczynski MW, Welsh BL, Gomez-Sanchez CE, Zhou MY, Gomez-Sanchez EP (2007) Gene expression profile in rat adrenal zona glomerulosa cells stimulated with aldosterone secretagogues. Physiol Genomics 32:117–127PubMedCrossRefGoogle Scholar
  29. 29.
    Rossier BC (1997) 1996 Homer Smith Award Lecture. Cum grano salis: the epithelial sodium channel and the control of blood pressure. J Am Soc Nephrol 8:980–992PubMedGoogle Scholar
  30. 30.
    Salamonsen LA, Edgell T, Rombauts LJ, Stephens AN, Robertson DM, Rainczuk A, Nie G, Hannan NJ (2013) Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery. Fertil Steril 99:1086–1092PubMedCrossRefGoogle Scholar
  31. 31.
    Santucci L, Candiano G, Bruschi M, Bodria M, Murtas C, Petretto A, Ghiggeri GM (2013) Urinary proteome in a snapshot: normal urine and glomerulonephritis. J nephrol 26:610–616PubMedCrossRefGoogle Scholar
  32. 32.
    Santucci L, Candiano G, Bruschi M, D’Ambrosio C, Petretto A, Scaloni A, Urbani A, Righetti PG, Ghiggeri GM (2012) Combinatorial peptide ligand libraries for the analysis of low-expression proteins: validation for normal urine and definition of a first protein MAP. Proteomics 12:509–515PubMedCrossRefGoogle Scholar
  33. 33.
    Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis: Official J Natl Kidney Found 42:658–676CrossRefGoogle Scholar
  34. 34.
    Shen Q, Lin D, Jiang X, Li H, Zhang Z (1994) Blood pressure changes and hormonal contraceptives. Contraception 50:131–141PubMedCrossRefGoogle Scholar
  35. 35.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858PubMedCrossRefGoogle Scholar
  36. 36.
    Su S, Duan J, Wang P, Liu P, Guo J, Shang E, Qian D, Tang Y, Tang Z (2013) Metabolomic study of biochemical changes in the plasma and urine of primary dysmenorrhea patients using UPLC-MS coupled with a pattern recognition approach. J Proteome Res 12:852–865PubMedCrossRefGoogle Scholar
  37. 37.
    Torffvit O, Melander O, Hulten UL (2004) Urinary excretion rate of Tamm-Horsfall protein is related to salt intake in humans. Nephron Physiol 97:31–36CrossRefGoogle Scholar
  38. 38.
    Wang J, Wang J, Zhang Y, Yang G, Zhou WJ, Shang AJ, Zou LP (2012) Proteomic analysis of adrenocorticotropic hormone treatment of an infantile spasm model induced by N-methyl-D-aspartic acid and prenatal stress. PLoS ONE 7:e45347PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yoo KH, Thornhill BA, Chevalier RL (2000) Angiotensin stimulates TGF-beta1 and clusterin in the hydronephrotic neonatal rat kidney. Am J Physiol Regul Integr Comp Physiol 278:R640–645PubMedGoogle Scholar
  40. 40.
    Zheng J, Liu L, Wang J, Jin Q (2013) Urinary proteomic and non-prefractionation quantitative phosphoproteomic analysis during pregnancy and non-pregnancy. BMC Genom 14:777CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Annalisa Castagna
    • 1
  • Sarath Kiran Channavajjhala
    • 1
  • Francesca Pizzolo
    • 1
  • Oliviero Olivieri
    • 1
    Email author
  1. 1.Department of Medicine, Unit of Internal MedicineUniversity of VeronaVeronaItaly

Personalised recommendations