Skip to main content

Abstract

In this chapter, applications solved by EAs software and advanced EAs software introduced in previous chapters and dealing with six (6) multi-objective design optimization problems are described. Different MOEAs are used and the efficiency of their optimizers are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jameson A (2001) A perspective on computational algorithms for aerodynamic analysis and design. Prog Aerosp Sci 37(2):197–243(47)

    Article  MathSciNet  Google Scholar 

  2. Kim HJ, Rho OH (1997) Dual-point design of transonic airfoils using the hybrid inverse optimization method. J Aircr 34(5):612–618

    Article  Google Scholar 

  3. Obayashi S (1997). Aerodynamic optimization with evolutionary algorithms. In: von Karman Institute for Fluid Dynamics-Lecture Series. Belgium.

    Google Scholar 

  4. Obayashi S (1998). Multidisciplinary Design Optimization of Aircraft Wing Plan form Based on Evolutionary Algorithms. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, La Jolla, California.

    Google Scholar 

  5. Obayashi S, Takanashi S (1996) Genetic optimization of target pressure distributions for inverse design methods. AIAA J 34(5):881–886

    Article  Google Scholar 

  6. Zetina AM, Shinkyu J, Shigeru O (2013) Airfoil aerodynamic optimization for a high-altitude long-endurance aircraft using multi-objective genetic-algorithms. IEEE C Evol Computat: 2314–2320

    Google Scholar 

  7. Oyama A, Liou MS, Obayashi S (2002) Transonic axial-flow blade shape optimization using evolutionary algorithm and three-dimensional navier-stokes solver, 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization, Georgia, Atlanta

    Google Scholar 

  8. Abott H, Von Doenhoff AE. Theory of wing sections. Dover

    Google Scholar 

  9. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R, Sunderam V. PVM: parallel virtual machine. A User’s guide and tutorial for networked parallel computing. Massachusetts Institute of Technology

    Google Scholar 

  10. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. Lawrence Erlbaum Associates, Pittsburgh, pp 93–100

    Google Scholar 

  11. Srinivas N, Deb K (1994) Multi objective optimisation using non-dominated sorting in genetic algorithms. Evolut Comput 2(3):221–248

    Article  Google Scholar 

  12. Drela M (1993) A user’s guide to MSES V2.3.

    Google Scholar 

  13. Reneaux J (2004) Overview on drag reduction technologies for civil transport aircraft. ECCOMAS 24–28 July

    Google Scholar 

  14. Wagner S, Sommerer A, Lutz A (2000) Numerical optimisation of adaptive transonic airfoils with variable camber. In: Proceedings 22nd ICAS Congress, number ICA2.111, Harrogate, United Kingdom, p 1–10

    Google Scholar 

  15. Quagliarella D, Vicini A (1999) Designing high-lift airfoils using genetic algorithms. In: Kaisa M, Marko M, Pekka N, Jacques P (eds) Proceedings of EUROGEN’99, University of Jyváskylä, Finland

    Google Scholar 

  16. Quagliarella D, Vicini A. A multiobjective approach to transonic wing design by means of genetic algorithms. In: NATO RTO AVT symposium on aerodynamic design and optimization, number RTO-MP—35, Ottawa, Canada.

    Google Scholar 

  17. Chen HQ, Mantel B, Periaux J, Sefrioui M (1998) Solution of some non linear fluid dynamics problems by means of genetic algorithms. In: Chetverushkin B, Desideri J-A, Kuznetsov YA, Muzafarov KA, Periaux J, Pironneau O (eds) Experimentation, modeling and computation in flow, turbulence and combustion, vol 2. Computational methods in Applied Sciences. Wiley, Chichester

    Google Scholar 

  18. Gano S, Renaud J. Optimized unmanned aerial vehicle with wing morphing for extended range and endurance. 9th AIAA/ISSMO Symposium and Exhibit on multidisciplinary analysis and optimization, Atlanta GA

    Google Scholar 

  19. Vickers M, Robert M (December 2001) Future warfare 20XX Wargame series: lessons learned report’, Center for Strategic and Budgetary Assessments (CSBA)

    Google Scholar 

  20. Warner CG (1999) Implementing Joint Vision 2010: A revolution in military affairs for strategic air campaigns. Air University Press, Maxwell Air Force Base

    Google Scholar 

  21. Geer H, Bolkcom C. Unmanned aerial vehicles: background and Issues for Congress. CRC report for congress, Congressional Research Service, Library of Congress, Washington DC, USA.

    Google Scholar 

  22. Air-Attack. X-47 Pegasus Unmanned Combat Aerial Vehicle-Naval Version (UCAV-N), http://www.air-attack.com/page/28/X-47-Pegasus-UCAV-N.html

  23. Directory of U.S. Military Rockets and Missiles: Northrop Grumman X-47 Pegasus http://www.designation-systems.net/dusrm/app4/x-47.htm

  24. Samli U, Cotuk N (2003) Shaping considerations in the RCS reduction. 81504 Pendik Istanbul Turkey, AFCEA

    Google Scholar 

  25. Stimon G Introduction to airborne radar. SciTech Publishing, Inc.

    Google Scholar 

  26. UCAVs Chapter 16 of 19 (1998) http://www.vectorsite.net/twuav_16.html

  27. Kok J, Gonzalez LF (2013) N.A Kelson FPGA implementation of an evolutionary algorithm for autonomous unmanned aerial vehicle on-board path planning. IEEE Trans Evol Comput 17(2):272–281

    Article  Google Scholar 

  28. Gonzalez F, Narayan P, Castro MPG, Zeller L (2011) Development of an autonomous unmanned aerial system to collect time-stamped samples from the atmosphere and localize potential pathogen sources. J Field Robot 28(6):961–976

    Google Scholar 

  29. Lee D, Gonzalez LF, Periaux J, UAS Mission Path Planning System, (MPPS) using hybrid-game coupled to multi-objective optimizer. J Dyn Sys Meas and Control 132(4)

    Google Scholar 

  30. Bertola A, Gonzalez LF (February 2013) Adaptive dynamic path re-planning RRT algorithms with game theory for UAVs. In 15th Australian International Aerospace Congress (AIAC15), 25-28, Melbourne Converntion Centre, Melbourne, VIC

    Google Scholar 

  31. Florent C, Gonzalez LF, Motta N (February 2013) Coordination of UAV path planning in 2D and 3D in environmental/bio sensing applications. In 15th Australian International Aerospace Congress (AIAC15), 25–28, Melbourne Convention Centre, Melbourne, VIC

    Google Scholar 

  32. Kok J, Bruggemann T, Gonzalez LF (2013) An evolutionary computation approach to three-dimensional path planning for unmanned aerial vehicles with tactical and kinematic constraints. In Proceedings of the 15th Australian International Aerospace Congress, Melbourne Convention Centre, Melbourne, VIC.

    Google Scholar 

  33. Rappa G, Gonzalez LF, Kok J, Quagliotti F Hybrid game evolutionary algorithm for mission path planning of aerial survey tasks. In Grant I (Ed.) Proceedings of the 28th International Congress of the Aeronautical Sciences, Optimage Ltd., Brisbane Convention & Exhibition Centre, Brisbane, QLD, pp. 1–13.

    Google Scholar 

  34. Northrop Grumman-Defining The Future. X-47B UCAS, http://www.is.northropgrumman.com/systems/nucasx47b.html

  35. Global Security: Military X-47 (A/B) Pegasus UCAV http://www.globalsecurity.org/military/systems/aircraft/x-47-specs.htm

  36. Chatzigeorgiadis F, Jenn DC (2004) A MATLAB physical-optics RCS prediction code. IEEE Antennas Propag Mag 46(4):136–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Periaux .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Periaux, J., Gonzalez, F., Lee, D. (2015). Multi-Objective Optimization Model Test Case Problems. In: Evolutionary Optimization and Game Strategies for Advanced Multi-Disciplinary Design. Intelligent Systems, Control and Automation: Science and Engineering, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9520-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9520-3_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9519-7

  • Online ISBN: 978-94-017-9520-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics