Skip to main content

Metabolic Engineering of Microorganisms for Biosynthesis of Antibiotics

  • Chapter
  • First Online:
Systems and Synthetic Biology

Abstract

Number of microorganisms produces antibiotics that can inhibit or kill the other microbes. The production of some antibiotics is not sufficient in native host rather difficult to synthesize chemically and to extract in large amounts for commercialization. Metabolic engineering plays an increasingly significant role in the production of antibiotics and its precursors. Thus, we engineer biosynthetic pathways in desire host for the production of sufficient quantity of antibiotics. In this chapter, we illustrated bioengineering of different microbes using synthetic biology and metabolic engineering approaches for production and regulation of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9:461–465

    Google Scholar 

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    Google Scholar 

  • Asadollahi MA, Maury J, Møller K et al (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99:666–677

    Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R et al (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Google Scholar 

  • Bosch F, Rosich L (2008) The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology 82:171–179

    Google Scholar 

  • Carbonell P, Planson AG, Fichera D et al (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122

    Google Scholar 

  • Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    Google Scholar 

  • Chen Y, Deng W, Wu J et al (2008) Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation. Appl Environ Microbiol 74:1820–1828

    Google Scholar 

  • Eustaquio AS, Gust B, Li SM et al (2004) Production of 8-halogenated and 8-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11:1561–1572

    Google Scholar 

  • Florey HW (1945) Use of micro-organisms for therapeutic purposes. Br Med J 2:635–642

    Google Scholar 

  • Garg RP, Xuelei LQ, Lawrence BA et al (2008) Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc Natl Acad Sci U S A 105:6543–6547

    Google Scholar 

  • Heinzmann S, Entian KD, Stein T (2006) Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin. Appl Microbiol Biotechnol 69:532–536

    Google Scholar 

  • Herold K, Xu Z, Gollmick FA et al (2004) Biosynthesis of cervimycin C an aromatic polyketide antibiotic bearing an unusual dimethylmalonyl moiety. Org Biomol Chem 2:2411–2414

    Google Scholar 

  • Huang D, Jia X, Wen J et al (2011) Metabolic flux analysis and principal nodes identification for daptomycin production improvement by Streptomyces roseosporus. Appl Biochem Biotechnol 165:1725–1739

    Google Scholar 

  • Jung WS, Lee SK, Hong JS et al (2006) Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl Microbiol Biotechnol 72:763–769

    Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435

    Google Scholar 

  • Kurumbang NP, Park JW, Yoon YJ et al (2010) Heterologous production of ribostamycin derivatives in engineered Escherichia coli. Res Microbiol 161:526–533

    Google Scholar 

  • Lee HY, Khosla C (2007) Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biol 5:e45

    Google Scholar 

  • Lee SY, Kim HU, Park JH Kim TY et al (2009) Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today 14:78–88

    Google Scholar 

  • Levy SB (1994) Balancing the drug-resistance equation. Trends Microbiol 2:341–342

    Google Scholar 

  • Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8:240–252

    Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    Google Scholar 

  • Maharjan S, Koju D, Lee HC et al (2012) Metabolic engineering of Nocardia sp. CS682 for enhanced production of nargenicin A. Appl Biochem Biotechnol 166:805–817

    Google Scholar 

  • Marshall CG, Lessard IA, Park I et al (1998) Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42:2215–2220

    Google Scholar 

  • Menzella HG, Reeves CD (2007) Combinatorial biosynthesis for drug development. Curr Opin Microbiol 10:238–245

    Google Scholar 

  • Menzella HG, Reid R, Carney JR et al (2005) Combinatorial polyketide biosynthesis by De Novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Google Scholar 

  • Minami H, Kim JS, Ikezawa N et al (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 105:7393–7398

    Google Scholar 

  • Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146

    Google Scholar 

  • Niraula NP, Kim SH, Sohng JK et al (2010) Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl Microbiol Biotechnol 87:1187–1194

    Google Scholar 

  • Nguyen KT, Ritz D, Gu JQ et al (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci U S A 103:17462–17467

    Google Scholar 

  • Park SY, Choi SK, Kim J et al (2012) Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene. Appl Environ Microbiol 78:4194–4199

    Google Scholar 

  • Penn J, Li X, Whiting A et al (2006) Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol 33:121–128

    Google Scholar 

  • Pfeifer BA, Admiraa SJ, Gramajo H et al (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792

    Google Scholar 

  • Pfleger BF, Pitera DJ, Smolke CD et al (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    Google Scholar 

  • Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Google Scholar 

  • Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San Diego

    Google Scholar 

  • Tang Z, Xiao C, Zhuang Y et al (2011) Improved oxytetracycline production in Streptomyces rimosus M4018 bymetabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol 49:17–24

    Google Scholar 

  • Teijeira F, Ullán RV, Fernández-Aguado M et al (2011) CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng 13:532–543

    Google Scholar 

  • Van Epps HL (2006) René Dubos: unearthing antibiotics. J Exp Med 203:259

    Google Scholar 

  • Veiga T, Solis-Escalante D, Romagnoli G et al (2012) Resolving phenylalanine metabolism sheds light on natural synthesis of penicillin G in Penicillium chrysogenum. Eukaryot Cell 11:238–249

    Google Scholar 

  • Von Nussbaum F, Brands M, Hinzen B et al (2006) Medicinal chemistry of antibacterial natural products—exodus or revival? Angew Chem Int Ed Engl 45:5072–5129

    Google Scholar 

  • Vrijbloed JW, Zerbe-Burkhardt K, Ratnatilleke A et al (1999) Insertional inactivation of methylmalonyl coenzyme A (CoA) mutase and isobutyryl-CoA mutase genes in Streptomyces cinnamonensis: influence on polyketide antibiotic biosynthesis. J Bacteriol 181:5600–5605

    Google Scholar 

  • Waksman SA (1947) What is an antibiotic or an antibiotic substance? Mycologia 39:565–569

    Google Scholar 

  • Weber JM, Cernota WH, Gonzalez MC et al (2012). An erythromycin process improvement using the diethyl methylmalonate-responsive (Dmr) phenotype of the Saccharopolyspora erythraea mutB strain. Appl Microbiol Biotechnol 93:1575–1583

    Google Scholar 

  • Weissman, KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936

    Google Scholar 

  • White NJ (1997) Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 41:1413–1422

    Google Scholar 

  • Witte W (2004) International dissemination of antibiotic resistant strains of bacterial pathogens. Infect Genet Evol 4:187–191

    Google Scholar 

  • Woodyer RD, Shao Z, Thomas PM et al (2006) Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem Biol 13:1171–1182

    Google Scholar 

  • Wu Y, Kang Q, Shen Y et al (2011) Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS. Mol Biosyst 7:2459–2469

    Google Scholar 

  • Yang F, Cao Y (2012) Biosynthesis of phloroglucinol compounds in microorganisms-review. Appl Microbiol Biotechnol 93:487–495

    Google Scholar 

  • Zhai L, Lin S, Qu D et al (2012) Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics. Metab Eng 14:388–393

    Google Scholar 

  • Zhang W, Ames BD, Tsai SC et al (2006) Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 72:2573–2580

    Google Scholar 

  • Zhang H, Skalina K, Jiang M et al (2012) Improved E. coli erythromycin A production through the application of metabolic and bioprocess engineering. Biotechnol Prog 28:292–296

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank A.K. Singh, Satya Prakash and Pritee Singh for providing the suggestions, encouragement and fruitful discussion during preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijai Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, V., Mani, I., Chaudhary, D. (2015). Metabolic Engineering of Microorganisms for Biosynthesis of Antibiotics. In: Singh, V., Dhar, P. (eds) Systems and Synthetic Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9514-2_18

Download citation

Publish with us

Policies and ethics