Skip to main content

Helianthus tuberosus

  • Chapter
  • First Online:
Book cover Edible Medicinal and Non Medicinal Plants
  • 3671 Accesses

Abstract

Helianthus tuberosus L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Ahmed MS, El-Sakhawy FS, Soliman SN, Abou HDMR (2005) Phytochemical and biological study of Helianthus tuberosus L. Egypt J Biomed Sci 18:134–147

    CAS  Google Scholar 

  • Allard HA, Garner WW (1940) Further observations on the response of various species of plants to length of day. USDA Tech Bull 727:35

    Google Scholar 

  • Alles MS, de Roos NM, Bakx JC, van de Lisdonk E, Zock PL, Hautvast JGAJ (1999) Consumption of fructooligosaccharides does not favorably affect blood glucose and serum lipid concentrations in patients with type 2 diabetes. Am J Clin Nutr 69:64–69

    CAS  PubMed  Google Scholar 

  • Aslan M, Orhan N, Orhan DD, Ergun F (2010) Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J Ethnopharmacol 128(2):384–389

    PubMed  Google Scholar 

  • Baba H, Yaoita Y, Kikuchi M (2005) Sesquiterpenoids from the leaves of Helianthus tuberosus L. J Tohoku Pharm Univ 52:21–25

    CAS  Google Scholar 

  • Bach V, Kidmose U, Bjørn GK, Edelenbos M (2012) Effects of harvest time and variety on sensory quality and chemical composition of Jerusalem artichoke (Helianthus tuberosus) tubers. Food Chem 133(1):82–89

    CAS  Google Scholar 

  • Bach V, Kidmose U, Thybo AK, Edelenbos M (2013) Sensory quality and appropriateness of raw and boiled Jerusalem artichoke tubers (Helianthus tuberosus L.). J Sci Food Agric 93:1211–1218

    CAS  PubMed  Google Scholar 

  • Baldini M, Danuso F, Turi M, Vannozzi P (2004) Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind Crop Prod 19(1):25–40

    CAS  Google Scholar 

  • Barta L, Rosta J (1958) Effect of Jerusalem artichoke honey-containing isocaloric diet on the sugar metabolism of diabetic children. Gyermekgyogyaszat 9(8–9):280–283

    CAS  PubMed  Google Scholar 

  • Beninati S, Iorio RA, Tasco G, Serafini-Fracassini D, Casadio R, Del Duca S (2012) Expression of different forms of transglutaminases by immature cells of Helianthus tuberosus sprout apices. Amino Acids 44(1):271–283

    PubMed  Google Scholar 

  • Benveniste I, Salaun JP, Durst F (1977) Wounding-induced cinnamic acid hydroxylase in Jerusalem artichoke tuber. Phytochemistry 16(1):69–73

    CAS  Google Scholar 

  • Bohlmann F, Jakupovic J, King RM, Robinson H (1980) Naturally occurring terpene derivatives. Part 257. New ent-atisirenic- and ent-kaurenic acid-derivatives from Helianthus species. Phytochemistry 19(5):863–886. (Neue ent-atisiren und ent-kaurensäure-derivate aus Helianthus arten)

    CAS  Google Scholar 

  • Bouhnik Y, Flourié B, Riottot M, Bisetti N, Gailing MF, Guibert A, Bornet F, Rambaud JC (1996) Effects of fructo-oligosaccharides ingestion on fecal Bifidobacteria, and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer 26:21–29

    CAS  PubMed  Google Scholar 

  • Bouhnik Y, Flourié B, D’Agay-Abensour L, Pochart P, Gramet G, Durand M, Rambaud JC (1997) Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr 127(3):444–448

    CAS  PubMed  Google Scholar 

  • Bouhnik Y, Vahedi K, Achour L, Attar A, Salfati J, Pochart P, Marteau P, Flourié B, Bornet F, Rambaud JC (1999) Short-chain fructo-oligosaccharide administration dose dependently increases fecal bifidobacteria in healthy humans. J Nutr 129(1):113–116

    CAS  PubMed  Google Scholar 

  • Bouhnik Y, Achour L, Paineau D, Riottot M, Attar A, Bornet F (2007) Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr J 6:42

    PubMed Central  PubMed  Google Scholar 

  • Bourne Y, Zamboni V, Barre A, Peumans WJ, Van Damme EJ, Rougé P (1999) Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Structure 7(12):1473–1482

    CAS  PubMed  Google Scholar 

  • Buddington RK, Williams CH, Chen SC, Witherly SA (1996) Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am J Clin Nutr 63:709–716

    CAS  PubMed  Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Revised reprint, 2 vol. Ministry of Agriculture and Co-operatives, Kuala Lumpur, Malaysia, vol 1 (A–H) pp 1–1240, vol 2 (I–Z) pp 1241–2444

    Google Scholar 

  • Cabello-Hurtado F, Durst F, Jorrín JV, Werck-Reichhart D (1998) Coumarins in Helianthus tuberosus: characterization, induced accumulation and biosynthesis. Phytochemistry 49(4):1029–1036

    CAS  Google Scholar 

  • Cabezas MJ, Rabert C, Bravo S, Shene C (2002) Inulin and sugar contents in Helianthus tuberosus and Cichorium intybus tubers: effect of postharvest storage temperature. J Food Sci 67:2860–2865

    CAS  Google Scholar 

  • Campbell JM, Fahey GC, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and faecal short-chain fatty acids, pH and microflora in rats. J Nutr 127(1):130–136

    CAS  PubMed  Google Scholar 

  • Cao HL, Liu QS, Li SG, Zhao ZB, Du YG (2008) Helianthus tuberosus – a good kind of biomass source for dimethylfruran production. J Biotechnol 136:S271–S272

    Google Scholar 

  • Caserta G, Cervigni T (1991) The use of Jerusalem artichoke stalks for the production of fructose or ethanol. Bioresour Technol 35(3):247–250

    CAS  Google Scholar 

  • Causey JL, Feirtag JM, Gallaher DD, Tungland BC, Salvin JL (2000) Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr Res 20(2):191–201

    CAS  Google Scholar 

  • Celik I, Isik F, Gursoy O, Yilmaz Y (2013) Use of Jerusalem artichoke (Helianthus tuberosus) tubers as a natural source of inulin in cakes. J Food Process Preserv 37:483–488

    CAS  Google Scholar 

  • Chang TJ, Zhai HL, Chen SB, Song GS, Xu HL, Wei XL, Zhu Z (2006) Cloning and functional analysis of the bifunctional agglutinin/trypsin inhibitor from Helianthus tuberosus L. J Integr Plant Biol 48(8):971–982

    CAS  Google Scholar 

  • Chechetkin IR, Medvedeva NV, Grechkin AN (2004) The novel pathway for ketodiene oxylipin biosynthesis in Jerusalem artichoke (Helianthus tuberosus) tubers. Biochim Biophys Acta 1686(1–2):7–14

    CAS  PubMed  Google Scholar 

  • Chekroun MB, Amzile J, Mokhtari A, El HNE, Prevost J, Fontanillas R (1996) Comparison of fructose production by 37 cultivars of Jerusalem artichoke (Helianthus tuberosus L.). N Z J Crop Hort 24(1):115–120

    CAS  Google Scholar 

  • Chen FJ, Long XH, Yu MN, Liu ZP, Liu L, Shao HB (2013) Phenolics and antifungal activities analysis in industrial crop Jerusalem artichoke (Helianthus tuberosus L.) leaves. Ind Crop Prod 47:339–345

    CAS  Google Scholar 

  • Cheng Y, Zhou WG, Gao CF, Lan K, Gao Y, Wu QY (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84(5):777–781

    CAS  Google Scholar 

  • Chernenko TV, Glushenkova AI, Rakhimov DA (2008) Lipids of Helianthus tuberosus tubers. Chem Nat Comp 44(1):1–2

    CAS  Google Scholar 

  • Choi HG, Jiang YF, Ryu SY, Na MK, Lee SH (2012) Cytotoxicity of sesquiterpene lactones from leaves of Helianthus tuberosus L. Kor J Pharmacogn 43(1):6–9. (In Korean)

    CAS  Google Scholar 

  • Cieślik E, Gębusia A, Florkiewicz A, Mickowska B (2011) The content of protein and of amino acids in Jerusalem artichoke tubers (Helianthus tuberosus L.) of red variety Rote Zonenkugel. Acta Sci Polon Technol Aliment 10(4):433–441

    Google Scholar 

  • Clausen MR, Bach V, Edelenbos M, Bertram HC (2012) Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers. J Agric Food Chem 60(37):9495–9501

    CAS  PubMed  Google Scholar 

  • Conde JR, Tenorio JL, Rodriguez-Maribona B, Ayerbe L (1991) Tuber yield of Jerusalem artichoke (Helianthus tuberosus L.) in relation to water stress. Biomass Bioenergy 3:131–142

    Google Scholar 

  • Cooper PD (1995) Vaccine adjuvants based on gamma inulin. Pharm Biotechnol 6:559–580

    CAS  PubMed  Google Scholar 

  • Cooper PD, Carter M (1986) The anti-melanoma activity of inulin in mice. Mol Immunol 23(8):903–908

    CAS  PubMed  Google Scholar 

  • Cooper PD, Steele EJ (1988) The adjuvanticity of gamma inulin. Immunol Cell Boil 66(Pt5-6):345–352

    CAS  Google Scholar 

  • Cosgrove DR, Oelke EA, Doll DJ, Davis DW, Undersander DJ, Oplinger ES (2000) Jerusalem artichoke. http://www.hort.purdue.edu/newcrop/afcm/jerusart.htm

  • Coudray C, Tressol JC, Gueux E, Rayssinguier Y (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption of calcium and magnesium in rats. Eur J Nutr 42:91–98

    CAS  PubMed  Google Scholar 

  • Curt MD, Aguado P, Sanz M, Sánchez G, Fernández J (2006) Clone precocity and the use of Helianthus tuberosus L. stems for bioethanol. Ind Crops Prod 24(3):314–320

    CAS  Google Scholar 

  • Dao TH, Zhang J, Bao J (2013) Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresour Technol 148:157–162

    CAS  PubMed  Google Scholar 

  • D’egidio MG, Cecchini C, Cervigni T, Donini B, Pignatelli V (1998) Production of fructose from cereal stems and polyannual cultures of Jerusalem artichoke. Ind Crop Prod 7(2–3):113–119

    Google Scholar 

  • Del Duca S, Favali MA, Serafini-Fracassini D, Pedrazzini R (1993) Transglutaminase activity during greening and growth of Helianthus tuberosus explants in vitro. Protoplasma 174(1–2):1–9

    Google Scholar 

  • Dondini L, Del Duca S, Dall’Agata L, Bassi R, Gastaldelli M, Della Mea M, Di Sandro A, Claparols I, Serafini-Fracassini D (2003) Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta 217(1):84–95

    CAS  PubMed  Google Scholar 

  • Douady D, Kader JC, Mazliak P (1978) Properties of plant phospholipid-exchange proteins. Phytochemistry 17(4):793–794

    CAS  Google Scholar 

  • Duke JA (1983) Handbook of energy crops. http://www.hort.purdue.edu/newcrop/duke_energy/Helianthus_tuberosus.html

  • Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67:517–531

    CAS  Google Scholar 

  • Facciola S (1990) Cornucopia. A source book of edible plants. Kampong Publications, Vista, 677 pp

    Google Scholar 

  • Fahlstadius P (1991) Absolute configurations of 9,10-epoxydodecanoic acids biosynthesized by microsomes from Jerusalem artichoke tubers. Phytochemistry 30(6):1905–1907

    CAS  Google Scholar 

  • Falcone P, Serafini-Fracassini D, Del Duca S (1993) Comparative studies of transglutaminase activity and substrates in different organs of Helianthus tuberosus. J Plant Physiol 142(3):265–273

    CAS  Google Scholar 

  • Fateh R, Iravani S, Frootan M, Rasouli MR, Saadat S (2011) Synbiotic preparation in men suffering from functional constipation: a randomised controlled trial. Swiss Med Wkly 141:w13239

    CAS  PubMed  Google Scholar 

  • Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne N (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30:163–167

    CAS  PubMed  Google Scholar 

  • Fleming SE, GrootWassink JW (1979) Preparation of high-fructose syrup from the tubers of the Jerusalem artichoke (Helianthus tuberosus L.). CRC Crit Rev Food Sci Nutr 12(1):1–28

    CAS  PubMed  Google Scholar 

  • Frehner M, Keller F, Wiemken A (1984) Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers (Helianthus tuberosus L.). J Plant Physiol 116(3):197–208

    CAS  PubMed  Google Scholar 

  • Fuchs A (1993) Inulin and inulin-containing crops, vol 3, Studies in plant science. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Gedrovica I, Karklina D, Fras A, Jablonka O, Boros D (2011) The non–starch polysaccharides quantity changes in pastry products where Jerusalem artichoke (Helianthus tuberosus L.) added. Procedia Food Sci 1:1638–1644

    CAS  Google Scholar 

  • Giannattasio M, Sica G, Macchia V (1974) Cyclic AMP phosphodiesterase from dormant tubers of Jerusalem artichoke. Phytochemistry 13(12):2729–2733

    CAS  Google Scholar 

  • Giannattasio M, Carratu G, Tucci GF, Carafa AM (1979) Cyclic AMP binding protein from Jerusalem artichoke rhizome tissues. Phytochemistry 18(10):1613–1616

    CAS  Google Scholar 

  • Griffaut B, Debiton E, Madelmont JC, Maurizis JC, Ledoigt G (2007) Stressed Jerusalem artichoke tubers (Helianthus tuberosus L.) excrete a protein fraction with specific cytotoxicity on plant and animal tumour cell. Biochim Biophys Acta 1770(9):1324–1330

    CAS  PubMed  Google Scholar 

  • GrootWassink JWD, Fleming SE (1980) Non-specific β-fructofuranosidase (inulase) from Kluyveromyces fragilis: batch and continuous fermentation, simple recovery method and some industrial properties. Enzym Microb Technol 2(1):45–53

    CAS  Google Scholar 

  • Guiraud JP, Daurelles J, Galzy P (1981) Alcohol production from Jerusalem artichoke using yeasts with inulinase activity. Biotechnol Bioeng 23:1461–1465

    CAS  Google Scholar 

  • Guiraud JP, Caillaud JM, Galzy P (1982) Optimization of alcohol production from Jerusalem artichokes. Appl Microbiol Biotechnol 14:81–85

    CAS  Google Scholar 

  • Guiraud JP, Bourgi J, Chabbert N, Galzy P (1986) Fermentation of early-harvest Jerusalem artichoke extracts by Kluyveromyces fragilis. J Gen Appl Microbiol 32:371–381

    CAS  Google Scholar 

  • Gunnarson S, Malmberg A, Mathisen B, Theander O, Thyselius L, Wünsche U (1985) Jerusalem artichoke (Helianthus tuberosus L.) for biogas production. Biomass 7(2):85–97

    CAS  Google Scholar 

  • Harmankaya M, Juhaimi FA, Özcan MM (2012) Mineral contents of Jerusalem artichoke (Helianthus tuberosus L.) growing wild in Turkey. Anal Lett 45(15):2269–2275

    CAS  Google Scholar 

  • Hartmann MA, Benveniste P, Durst F (1972) Biosynthesis of sterols in Jerusalem artichoke tuber tissue. Phytochemistry 11(10):3003–3005

    CAS  Google Scholar 

  • Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y (1986) Effects of fructooligosaccharides on intestinal flora and human health. Bifidobact Microflora 5:37–50

    Google Scholar 

  • Hosono A, Ozawa A, Kato R, Ohnishi Y, Nakanishi Y, Kimura T, Nakamura R (2003) Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Biosci Biotechnol Biochem 67(4):758–764

    CAS  PubMed  Google Scholar 

  • Hu N, Yuan B, Sun J, Wang SA, Li FL (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95(5):1359–1368

    CAS  PubMed  Google Scholar 

  • Huxley AJ, Griffiths M, Levy M (eds) (1992) The new RHS dictionary of gardening, 4 vols. Macmillan, New York

    Google Scholar 

  • Izsaki GNZ (2006) Macro- and micro-element content and uptake of Jerusalem artichoke (Helianthus tuberosus L.). Cereal Res Commun 34(1):597–600

    Google Scholar 

  • Jackson KG, Taylor GR, Clohessy AM, Williams CM (1999) The effects of the daily intake of inulin on fasting lipid, insulin, and glucose concentrations in middle-aged men and women. Br J Nutr 82(1):23–30

    CAS  PubMed  Google Scholar 

  • Jaiswal R, Deshpande S, Kuhnert N (2011) Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leaves by LC-MS. Phytochem Anal 22:432–441

    CAS  PubMed  Google Scholar 

  • Jasiewicz C, Antonkiewicz J (2002) Heavy metal extraction by Jerusalem artichoke (Helianthus tuberosus L.) from soils contaminated with heavy metals. Pol Chem Inzyn Ekol 9:379–386

    CAS  Google Scholar 

  • Kapusta I, Krok ES, Jamro DB, Cebulak T, Kaszuba J, Salach RT (2013) Identification and quantification of phenolic compounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers. J Food Agric Environ 11(3&4):601–606

    CAS  Google Scholar 

  • Kays SJ, Kultur F (2005) Genetic variation in Jerusalem artichoke (Helianthus tuberosus L.) flowering date and duration. HortSci 40:1675–1678

    Google Scholar 

  • Kays SJ, Nottingham S (2007) Biology and chemistry of Jerusalem artichoke: Helianthus tuberosus L. CRC Press, Boca Raton, 496 pp

    Google Scholar 

  • Keller F, Frehner M, Wiemken A (1988) Sucrose synthase, a cytosolic enzyme in protoplasts of Jerusalem artichoke tubers (Helianthus tuberosus L.). Plant Physiol 88:239–241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SH, Kim CH (2014) Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production. Renew Energy 65:83–92

    CAS  Google Scholar 

  • Kim DY, Fan JP, Chung HC, Han GD (2010) Changes in extractability and antioxidant activity of Jerusalem artichoke (Helianthus tuberosus L.) by various hydrostatic pressure treatments. Food Sci Biotechnol 19(5):1365–1371

    Google Scholar 

  • Kocsis L, Liebhard P, Praznik W (2007) Effect of seasonal changes on content and profile of soluble carbohydrates in tubers of different varieties of Jerusalem artichoke (Helianthus tuberosus L.). J Agric Food Chem 55(23):9401–9408

    CAS  PubMed  Google Scholar 

  • Koops AJ, Jonker HH (1994) Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus “Columbia:” fructan:fructan 1-fructosyltransferase. J Exp Bot 45:1623–1631

    CAS  Google Scholar 

  • Kosaric N, Cosentino GP, Wieczorek A (1984) The Jerusalem artichoke as an agricultural crop. Biomass 5:1–36

    CAS  Google Scholar 

  • Kronberga M, Gedrovica I, Karklina D (2013) The influence of Jerusalem artichoke as nutrition value increaser on microbiological parameters of confectionery products. 2nd international conference on nutrition and food sciences. IPCBEE 53(4):6–23

    Google Scholar 

  • Le Floc’h F, Lafleuriel J (1978) L’adeninephosphoribosyltransferase des pousses de topinambour Helianthus tuberosus. Phytochemistry 17(4):643–646

    Google Scholar 

  • Le Floc’h F, Lafleuriel J (1981) The purine nucleosidases of Jerusalem artichoke shoots. Phytochemistry 20(9):2127–2129

    Google Scholar 

  • Le Floc’h F, Lafleuriel J (1983) The particulate AMP aminohydrolase of Jerusalem artichoke tubers: partial purification and properties. Physiol Veg 21(1):15–27

    Google Scholar 

  • Le Floc’h F, Lafleuriel J, Guillot A (1982) Interconversion of purine nucleotides in Jerusalem artichoke shoots. Plant Sci Lett 27(3):309–316

    Google Scholar 

  • Li XD, Miao FP, Ji NY (2011) Two new epoxysteroids from Helianthus tuberosus. Molecules 16:8646–8653

    CAS  PubMed  Google Scholar 

  • Little G, Edelman J (1973) Solubility of plant invertases. Phytochemistry 12(1):67–71

    CAS  Google Scholar 

  • Liu HW, Liu ZP, Liu L, Zhao GM (2007) Studies on the antifungal activities and chemical components of extracts from Helianthus tuberosus leaves. Nat Prod Res Dev 19(3):405

    Google Scholar 

  • Liu LL, Wang HY, Yan H, Kong T (2009) Research on extraction technology and antioxidant activity of flavonoids from Jerusalem artichoke. In: Bioinformatics and biomedical engineering, ICBBE 3rd international conference 11–13 June 2009, pp 1–4

    Google Scholar 

  • Long XH, Mehta SK, Liu ZP (2008) Effect of NO3–N enrichment on seawater stress tolerance of Jerusalem artichoke (Helianthus tuberosus). Pedosphere 18(1):113–123

    CAS  Google Scholar 

  • Long XH, Huang ZR, Zhang ZH, Li Q, Zed R, Liu ZP (2010) Seawater stress differentially affects germination, growth, photosynthesis, and ion concentration in genotypes of Jerusalem artichoke (Helianthus tuberosus L.). J Plant Growth Regul 29(2):223–231

    CAS  Google Scholar 

  • Long X, Ni N, Wang L, Wang X, Wang J, Zhang Z, Zed R, Liu Z, Shao H (2013) Phytoremediation of cadmium-contaminated soil by two Jerusalem artichoke (Helianthus tuberosus L.) genotypes. Clean Soil Air Water 41:202–209

    CAS  Google Scholar 

  • Luo J, Rizkalla SW, Alamowitch C, Boussairi A, Blayo A, Barry JL, Laffitte A, Guyon F, Bornet FRJ, Slama G (1996) Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr 63:939–9

    CAS  PubMed  Google Scholar 

  • Luo J, Van Yperselle M, Rizkalla SW, Rossi F, Bornet FR, Slama G (2000) Chronic consumption of short-chain fructooligosaccharides does not affect basal glucose production or insulin resistance in type 2 diabetics. J Nutr 130(6):1572–1577

    CAS  PubMed  Google Scholar 

  • Lüscher M, Erdin C, Sprenger N, Hochstrasser U, Boller T, Wiemken A (1996) Inulin synthesis by a combination of purified fructosyltransferases from tubers of Helianthus tuberosus. FEBS Lett 386(1–2):39–42

    Google Scholar 

  • Ma XY, Zhang LH, Shao HB, Xu G, Zhang F, Ni FT, Brestic M (2011) Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J Med Plant Res 5(8):1272–1279

    Google Scholar 

  • MacLeod AJ, Pieris NM, de Troconis NG (1982) Aroma volatiles of Cynara scolymus and Helianthus tuberosus. Phytochemistry 21(7):1647–1651

    CAS  Google Scholar 

  • Margaritis A, Bajpai P (1982) Ethanol production from Jerusalem artichoke tubers (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei. Biotechnol Bioeng 24(4):941–953

    CAS  PubMed  Google Scholar 

  • Margaritis A, Bajpai P, Cannell E (1981) Optimization studies for the bioconversion of Jerusalem artichoke tubers to ethanol and microbial biomass. Biotechnol Lett 3(10):595–599

    CAS  Google Scholar 

  • Marx SP, Nösberger J, Frehner M (1997) Seasonal variation of fructan-β-fructosidase (FEH) activity and characterization of a β-(2-1)-linkage specific FEH from tubers of Jerusalem artichoke (Helianthus tuberosus). New Phytol 135:267–277

    CAS  Google Scholar 

  • Matsuura H, Yoshihara T, Ichihara A (1993a) Four new polyacetylenic glucosides, methyl β-D-Glucopyranosyl helianthenate C-F, from Jerusalem artichoke (Helianthus tuberosus L.). Biosci Biotechnol Biochem 57(9):1492–1498

    CAS  Google Scholar 

  • Matsuura H, Yoshihara T, Ichihara A, Kukuta Y, Koda Y (1993b) Tuber-forming substances in Jerusalem artichoke (Helianthus tuberosus L.). Biosci Biotechnol Biochem 57(8):1253–1256

    CAS  Google Scholar 

  • Meijer WJM, Mathijssen EWJM (1991) The relations between flower initiation and sink strength of stems and tubers of Jerusalem artichoke. Netherland J Agric Sci 39(2):123–135

    Google Scholar 

  • Meshcheriakova VA, Plotnikova OA, Sharafetdinov KK, Iatsyshina TA (1995) Use of Jerusalem artichokes in diet therapy of patients with type II diabetes mellitus. Vopr Pitan 3:24–27

    PubMed  Google Scholar 

  • Miyazawa M, Kameoka H (1983) Helianthol A, a sesquiterpene alcohol from Helianthus tuberosus. Phytochemistry 22(4):1040–1042

    CAS  Google Scholar 

  • Monti A, Amaducci MT, Venturi G (2005) Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes. Eur J Agron 23(2):136–145

    CAS  Google Scholar 

  • Morgan LJ, Pridham JB (1985) Fructose 1-phosphate formation in Jerusalem artichoke (Helianthus tuberosus) tubers. Phytochemistry 25(1):19–22

    Google Scholar 

  • Morimoto H, Oshio H (1981) Isolation of deacetylviguiestenin and erioflorin from Helianthus tuberosus. J Nat Prod 44(6):748–749

    CAS  Google Scholar 

  • Morimoto H, Sanno Y, Oshio H (1966) Chemical studies on heliangine: a new sesquiterpene lactone isolated from the leaves of Helianthus tuberosus L. Tetrahedron 22(9):3173–3179

    CAS  Google Scholar 

  • Mullin WJ, Modler HW, Farnworth ER, Payne A (1994) The macronutrient content of fractions from Jerusalem artichoke tubers (Helianthus tuberosus). Food Chem 51(3):263–269

    CAS  Google Scholar 

  • Nakagawa R, Yasokawa D, Ikeda T, Nagashima K (1996) Purification and characterization of two lectins from callus of Helianthus tuberosus. Biosci Biotechnol Biochem 60(2):259–262

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Nosaka S, Suzuki M, Nagafuchi S, Takahashi T, Yajima T, Takenouchi-Ohkubo N, Iwase T, Moro I (2004) Dietary fructooligosaccharides up‐regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin Exp Immunol 137(1):52–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Negro MJ, Ballesteros I, Manzanares P, Oliva JM, Sáez F, Ballesteros M (2006) Inulin-containing biomass for ethanol production: carbohydrate extraction and ethanol fermentation. Biochem Biotechnol 129–132:922–932

    Google Scholar 

  • Newton PJ, Myers BA, West DW (1991) Reduction in growth and yield of Jerusalem artichoke caused by soil salinity. Irrigation Sci 12(4):213–221

    Google Scholar 

  • Nova E, Viadel B, Wärnberg J, Carreres JE, Marcos A (2011) Beneficial effects of a synbiotic supplement on self-perceived gastrointestinal well-being and immunoinflammatory status of healthy adults. J Med Food 14(1–2):79–85

    PubMed  Google Scholar 

  • Ohta A, Ohtsuki M, Baba S, Adachi T, Sakata T, Sakaguchi E (1995) Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr 125(9):2417–2424

    CAS  PubMed  Google Scholar 

  • Pan L, Sinden MR, Kennedy AH, Chai HB, Watson LE, Graham TL, Kinghorn AD (2008) Diterpenoids and sesquiterpene lactones from Helianthus tuberosus. Planta Med 74(03):85

    Google Scholar 

  • Pan L, Sinden MR, Kennedy AH, Chai HB, Watson LE, Graham TL, Kinghorn AD (2009) Bioactive constituents of Helianthus tuberosus. Phytochem Lett 2(1):15–18

    CAS  Google Scholar 

  • Park BS (2011) Effect of oral administration of Jerusalem artichoke inulin on reducing blood lipid and glucose in STZ-induced diabetic rats. J Anim Vet Adv 10(19):2501–2507

    CAS  Google Scholar 

  • Pierre F, Perrin P, Champ M, Bornet F, Meflah K, Menanteau J (1997) Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Res 57:225–228

    CAS  PubMed  Google Scholar 

  • Pilnik W, Vervelde GJ (1976) Jerusalem artichoke (Helianthus tuberosus L.) as a source of fructose, a natural alternative sweetener. Z Pflanzenbau 142(2):153–162

    CAS  Google Scholar 

  • Praznik W, Beck RHF (1987) Inulin composition during growth of tubers of Helianthus tuberosus. Agric Biol Chem 51(6):1593–1599

    CAS  Google Scholar 

  • Praznik W, Beck RHF, Spies T (1990) Isolation and characterization of sucrose:sucrose 1F-β-D-fructosyl-transferase from tubers of Helianthus tuberosus L. Agric Biol Chem 54:2429–2431

    CAS  Google Scholar 

  • Praznik W, Cieślik E, Filipiak-Florkiewicz A (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung 46(3):151–157

    CAS  PubMed  Google Scholar 

  • Pryke JA, Rees T (1977) The pentose phosphate pathway as a source of NADPH for lignin synthesis. Phytochemistry 16(5):557–560

    CAS  Google Scholar 

  • Radulović NS, Đorđević MR (2014) Chemical composition of the tuber essential oil from Helianthus tuberosus L. (Asteraceae). Chem Biodivers 11(3):427–437

    PubMed  Google Scholar 

  • Rakhimov DA, Arifkhodzhaev AO, Mezhlumyan LG, Yuldashev OM, Rozikova UA, Aikhodzhaeva N, Vakil MM (2003) Carbohydrate and proteins from Helianthus tuberosus. Chem Nat Comp 39(3):312–313

    CAS  Google Scholar 

  • Rakhimov DA, Zhauynbaeva KS, Mezhlumyan LG, Syrov VN, Khushbaktova ZA, Salikhov SA, Mavlyanova RF (2011) Carbohydrate and protein components of Helianthus tuberosus and their biological activity. Chem Nat Comp 47(4):503–506

    CAS  Google Scholar 

  • Rawate PD, Hill RM (1985) Extraction of a high-protein isolate from Jerusalem artichoke (Helianthus tuberosus) tops and evaluation of its nutrition potential. J Agric Food Chem 33:29–31

    CAS  Google Scholar 

  • Righetti L, Tassoni A, Bagnihis N (2008) Polyamines content in plant derived food: a comparison between soybean and Jerusalem artichoke. Food Chem 111(4):852–856

    CAS  Google Scholar 

  • Roberfroid MB (2005) Introducing inulin-type fructans. Br J Nutr 93(Suppl 1):S13–S25

    CAS  PubMed  Google Scholar 

  • Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr 137(11 Suppl):2493S–2502S

    CAS  PubMed  Google Scholar 

  • Roberfroid MB, Gibson GR, Delzenne N (1993) The biochemistry of oligofructose, a nondigestible fiber: an approach to calculate its caloric value. Nutr Rev 51:137–146

    CAS  PubMed  Google Scholar 

  • Rumessen JJ, Bodé S, Hamberg O, Gudmand-Høyer E (1990) Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. Am J Clin Nutr 52(4):675–681

    CAS  PubMed  Google Scholar 

  • Saengthongpinit W, Sajjaanantakul T (2005) Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharv Biol Technol 37(1):93–100

    CAS  Google Scholar 

  • Schittenhelm S (1999) Agronomic performance of root chicory, Jerusalem artichoke, and sugarbeet in stress and nonstress environments. Crop Sci 39:1815–1823

    Google Scholar 

  • Scoccianti V, Torrigiani P, Bagni N (1991) Occurrence of diamine oxidase activity in protoplasts and isolated mitochondria of Helianthus tuberosus tuber. J Plant Physiol 138(6):752–756

    CAS  Google Scholar 

  • Seiler GJ (1988) Nitrogen and mineral content of selected wild and cultivated genotypes of Jerusalem artichoke. Agron J 80(4):681–687

    CAS  Google Scholar 

  • Seiler GJ (1990) Protein and mineral concentrations in tubers of selected genotypes of wild and cultivated Jerusalem artichoke (Helianthus tuberosus, Asteraceae). Econ Bot 43(3):322–334

    Google Scholar 

  • Seiler GJ (1993) Forage and tuber yields and digestibility of selected wild and cultivated genotypes of Jerusalem artichoke. Agron J 85(1):29–33

    Google Scholar 

  • Seljåsen R, Slimestad R (2007) Fructooligosaccharides and phenolics in flesh and peel of spring harvested Helianthus tuberosus. Acta Hort (ISHS) 744:447–450

    Google Scholar 

  • Seo YH, Han JI (2014) Direct conversion from Jerusalem artichoke to hydroxymethylfurfural (HMF) using the Fenton reaction. Food Chem 151:207–211

    CAS  PubMed  Google Scholar 

  • Serafini-Fracassini D, Del Duca S, D’Orazi D (1988) First evidence for polyamine conjugation mediated by an enzymic activity in plants. Plant Physiol 87(3):757–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serafini-Fracassini D, Del Duca S, Torrigiani P (1989) Polyamine conjugation during the cell cycle of Helianthus tuberosus: non enzymatic and transglutaminase-like binding activity. Plant Physiol Biochem 27(5):659–668

    CAS  Google Scholar 

  • Slimestad R, Seljaasen R, Meijer K, Skar SL (2010) Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): morphology and content of sugars and fructo-oligosaccharides in stems and tubers. J Sci Food Agric 90(6):956–964

    CAS  PubMed  Google Scholar 

  • Speranza A, Bagni N (1978) Products of L-[14C-carbamoyl] citrulline metabolism in Helianthus tuberosus activated tissue. Z Pflanzenphysiol 88(2):163–168

    CAS  Google Scholar 

  • Spring O (1991) Sesquiterpene lactones from Helianthus tuberosus. Phytochemistry 30(2):519–522

    CAS  Google Scholar 

  • Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82(5):847–852

    CAS  PubMed  Google Scholar 

  • Suseelan KN, Mitra R, Pandey R, Sainis KB, Krishna TG (2002) Purification and characterization of a lectin from wild sunflower (Helianthus tuberosus L.) tubers. Arch Biochem Biophy 407(2):241–247

    CAS  Google Scholar 

  • Szambelan K, Nowak J, Chrapkowska KJ (2004) Comparison of bacterial and yeast ethanol fermentation yield from Jerusalem artichoke (Helianthus tuberosus L.) tubers pulp and juices. Acta Sci Pol Technol Aliment 3(1):45–53

    CAS  Google Scholar 

  • Taha HS, Abd El-Kawy AM, Fathalla M (2012) A new approach for achievement of inulin accumulation in suspension cultures of Jerusalem artichoke (Helianthus tuberosus) using biotic elicitors. J Genet Eng Biotechnol 10(1):33–38

    CAS  Google Scholar 

  • Takeuchi J, Nagashima T (2011) Preparation of dried chips from Jerusalem artichoke (Helianthus tuberosus) tubers and analysis of their functional properties. Food Chem 126(3):922–926

    CAS  Google Scholar 

  • Talipova M (2001) Lipids of Helianthus tuberosus. Chem N Comp 37(3):213–215

    CAS  Google Scholar 

  • Tassoni A, Bagni N, Ferri M, Franceschetti M, Khomutov A, Marques MP, Fiuza SM, Simonian AR, Serafini FD (2010) Helianthus tuberosus and polyamine research: past and recent applications of a classical growth model. Plant Physiol Biochem 48(7):496–505

    CAS  PubMed  Google Scholar 

  • Tchoné M, Bärwald G, Annemüller G, Fleischer L (2007) Separation and identification of phenolic compounds in Jerusalem artichoke (Helianthus tuberosus L.). Sci Aliment 26(5):394–408

    Google Scholar 

  • Terzic S, Atlagic J (2009) Nitrogen and sugar content variability in tubers of Jerusalem artichoke (Helianthus tuberosus). Genetika 41(3):289–295

    Google Scholar 

  • Terzić S, Atlagić J, Maksimović I, Zeremski T, Zorić M, Miklič V, Balalić I (2012) Genetic variability for concentrations of essential elements in tubers and leaves of Jerusalem artichoke (Helianthus tuberosus L.). Sci Hort 136:135–144

    Google Scholar 

  • Tesio F, Weston LA, Ferrero A (2011) Allelochemicals identified from Jerusalem artichoke (Helianthus tuberosus L.) residues and their potential inhibitory activity in the field and laboratory. Sci Hort 129(3):361–368

    CAS  Google Scholar 

  • The Plant List (2014) Helianthus tuberosus L. http://www.theplantlist.org/

  • U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) (2014) USDA national nutrient database for standard reference, Release 26. Nutrient data laboratory home page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • Umemura Y, Nakamura M, Funahashi S (1967) Isolation and characterization of uridine diphosphate fructose from tubers of Jerusalem artichoke (Helianthus tuberosus L.). Arch Biochem Biophys 119:240–251

    CAS  PubMed  Google Scholar 

  • Van Damme EJ, Barre A, Mazard AM, Verhaert P, Horman A, Debray H, Rouge P, Peumans WJ (1999) Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur J Biochem 259(1–2):135–142

    PubMed  Google Scholar 

  • Vervelde GJ (1996) Helianthus tuberosus L. In: Flach M, Rumawas F (eds) Plant resources of South-East Asia no. 9. Plants yielding non-seed carbohydrates. Prosea Foundation, Bogor. pp 100–102

    Google Scholar 

  • Vhile SG, Kjos NP, Sørum H, Overland M (2012) Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal 6(5):807–814

    CAS  PubMed  Google Scholar 

  • Waitzberg DL, Logullo LC, Bittencourt AF, Torrinhas RS, Shiroma GM, Paulino NP, Teixeira-da-Silva ML (2013) Effect of synbiotic in constipated adult women–a randomized, double-blind, placebo-controlled study of clinical response. Clin Nutr 32(1):27–33

    PubMed  Google Scholar 

  • Wang X, Gibson G (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol 75(4):373–380

    CAS  PubMed  Google Scholar 

  • Williams LA, Ziobro G (1982) Processing and fermentation of Jerusalem artichoke for ethanol production. Biotechnol Lett 4:45–50

    CAS  Google Scholar 

  • Wright LC, Brady CJ, Hinde RW (1981) Purification and properties of the arginase from Jerusalem artichoke tubers. Phytochemistry 20(12):2641–2645

    CAS  Google Scholar 

  • Yajima Y, Yasida T, Yamada Y (1975) Solubilization of Jerusalem artichoke tuber chromatin by 2,4-dichlorophenoxyacetic acid. Phytochemistry 14(9):1939–1943

    CAS  Google Scholar 

  • Yamashita K, Kawai K, Itakura M (1984) Effects of fructo-oligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr Res 4(6):961–966

    CAS  Google Scholar 

  • Yang FL, Liu QS, Bai XF, Du YG (2010) Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst. Bioresour Technol 102(3):3424–3429

    PubMed  Google Scholar 

  • Yang MJ, Wang L, Wu J, Li ZZ (2011) Study on antioxidant activity of flavonoids from Helianthus tuberosus leaves in vitro. Guizhou Agric Sci 4:52–54

    Google Scholar 

  • Yang HJ, Kwon DY, Kim MJ, Kang S, Kim DS, Park S (2012) Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats. Nutr Metab 9(1):112

    CAS  Google Scholar 

  • Yildiz G, Sacakli P, Gungor T, Uysal H (2008) The effect of Jerusalem artichoke (Helianthus tuberosus L.) on blood parameters, liver enzymes and intestinal pH in laying hens. J Anim Veter Adv 7(10):1297–1300

    CAS  Google Scholar 

  • Yoshihara T, Matsuura H, Ichihara A, Kikuta Y, Koda Y (1992) Tuber forming substances of Jerusalem artichoke (Helianthus tuberosus L.). In: Karsen CM, van Loon LC, Vreugdenhil D (eds) Progress in plant growth regulation. Kluwer Academic Publishers, Dordrecht/Boston, pp 286–290

    Google Scholar 

  • Yu J, Jiang J, Zhang Y, Lü H, Li Y, Liu J (2010) Simultaneous saccharification and fermentation of Jerusalem artichoke tubers to ethanol with an inulinase-hyperproducing yeast Kluyveromyces cicerisporus. Sheng Wu Gong Cheng Xue Bao 26(7):982–990. (In Chinese)

    CAS  PubMed  Google Scholar 

  • Yu J, Jiang J, Ji W, Li Y, Liu J (2011) Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain. Biotechnol Lett 33(1):147–152

    CAS  PubMed  Google Scholar 

  • Yuan WJ, Ren J, Zhao XQ, Bai FW (2008a) One-step ethanol fermentation with Kluyveromyces marxianus YX01 from Jerusalem artichoke. Sheng Wu Gong Cheng Xue Bao 24(11):1931–1936. (In Chinese)

    CAS  PubMed  Google Scholar 

  • Yuan WJ, Zhao XQ, Ge XM, Bai FW (2008b) Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J Appl Microbiol 105(6):2076–2083

    CAS  PubMed  Google Scholar 

  • Yuan XY, Gao MZ, Wang K, Xiao HB, Tan CY, Du YG (2008c) Analysis of chlorogenic acids in Helianthus tuberosus Linn leaves using high performance liquid chromatography–mass spectrometry. Se Pu 26(3):335–338

    PubMed  Google Scholar 

  • Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY (2012a) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112(1):38–44

    CAS  PubMed  Google Scholar 

  • Yuan XY, Gao MZ, Xiao HB, Tan CY, Du YG (2012b) Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem 133(1):10–14

    CAS  Google Scholar 

  • Yuan XY, Cheng MC, Mz G, Zhou RJ, Zhang LX, Xiao HB (2013) Cytotoxic constituents from the leaves of Jerusalem artichoke (Helianthus tuberosus L.) and their structure–activity relationships. Phytochem Lett 6(1):21–25

    CAS  Google Scholar 

  • Zalán Z, Hudáček J, Tóth-Markus M, Husová E, Solichová K, Hegyi F, Plocková M, Chumchalová J, Halász A (2011) Sensorically and antimicrobially active metabolite production of Lactobacillus strains on Jerusalem artichoke juice. J Sci Food Agric 91:672–679

    PubMed  Google Scholar 

  • Zawistowski J, Weselake RJ, Blank G, Murray E (1987) Fractionation of Jerusalem artichoke phenolase by immobilized copper affinity chromatography. Phytochemistry 26(11):2905–2907

    CAS  Google Scholar 

  • Zawistowski J, Biliaderis CG, Murray ED (1988a) Isolation and some properties of an acidic fraction of polyphenol oxidase from Jerusalem artichoke (Helianthus tuberosus L.). Food Biochem 12:23–35

    CAS  Google Scholar 

  • Zawistowski J, Biliaderis CG, Murray ED (1988b) Purification and characterization of Jerusalem artichoke (Helianthus tuberosus L.) polyphenol oxidase. J Food Biochem 12:1–22

    CAS  Google Scholar 

  • Zhao KF, Zhang AH, Zhou SB, Li ML (1984) Studies on the photoperiodic responses in short-day plant Helianthus tuberosus. Acta Bot Sin 26:392–396

    Google Scholar 

  • Zhao GM, Liu ZP, Chen MD, Guo SW (2008) Soil properties and yield of Jerusalem artichoke (Helianthus tuberosus L.) with seawater irrigation in North China plain. Pedosphere 18(2):195–202

    CAS  Google Scholar 

  • Ziyan E, Pekyardimci S (2003) Characterization of polyphenol oxidase from Jerusalem artichoke (Helianthus tuberosus). Turk J Chem 27:217–225

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2015). Helianthus tuberosus . In: Edible Medicinal and Non Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9511-1_21

Download citation

Publish with us

Policies and ethics