Skip to main content

Panax ginseng

  • Chapter
  • First Online:
Book cover Edible Medicinal and Non Medicinal Plants
  • 3919 Accesses

Abstract

Panax ginseng C.A. Meyer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abd El-Aty AM, Kim IK, Kim MR, Lee C, Shim JH (2008) Determination of volatile organic compounds generated from fresh, white and red Panax ginseng (C. A. Meyer) using a direct sample injection technique. Biomed Chromatogr 22:556–562

    CAS  PubMed  Google Scholar 

  • Abdel Salam OME, Nada SA, Arbid MS (2002) The effect of ginseng on bile-pancreatic secretion in the rat increase in proteins and inhibition of total lipids and cholesterol secretion. Pharmacol Res 45(4):349–353

    CAS  Google Scholar 

  • Abdel-Wahhab MA, Hassan NS, El-Kady AA, Khadrawy YA, El-Nekeety AA, Mohamed SR, Sharaf HA, Mannaa FA (2010) Red ginseng extract protects against aflatoxin B1 and fumonisins-induced hepatic pre-cancerous lesions in rats. Food Chem Toxicol 48(2):733–742

    CAS  PubMed  Google Scholar 

  • Ahn BZ, Kim SI, Lee YH (1989) Acetylpanaxydol and panaxydolchlorohydrin, two new polyenes from Korean ginseng with cytotoxic activity against L1210 cells. Arch Pharm (Weinheim) 322(4):223–226 (In German)

    CAS  Google Scholar 

  • Ahn HY, Hong SY, Kim JY, Kwon O (2013) Panax ginseng extract rich in ginsenoside protopanaxatriol offers combinatorial effects in nitric oxide production via multiple signaling pathways. Springerplus 2(1):96

    PubMed Central  PubMed  Google Scholar 

  • Aiko S, Mitsutoshi Y, Tadashi T, Kazumi Y, Kagemasa K, Eiichi S (1988) Proliferative effect of ginseng saponin on neurite extension of primary cultured neurons of the rat cerebral cortex. J Ethnopharmacol 22(2):173–181

    Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005a) CO(2)-induced total phenolics in suspension cultures of Panax ginseng C. A. Mayer roots: role of antioxidants and enzymes. Plant Physiol Biochem 43(5):449–457

    CAS  PubMed  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005b) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12(3):607–621

    Google Scholar 

  • Asada Y, Saito H, Yoshikawa T, Sakamoto K, Furuya T (1993) Biotransformation of 18 beta-glycyrrhetinic acid by ginseng hairy root culture. Phytochemistry 34(4):1049–1052

    CAS  PubMed  Google Scholar 

  • Avakian EV, Evonuk E (1979) Effect of Panax ginseng extract on tissue glycogen and adrenal cholesterol depletion during prolonged exercise. Planta Med 36(1):43–48

    CAS  PubMed  Google Scholar 

  • Avakian EV, Sugimoto RB, Taguchi S, Horvath SM (1984) Effect of Panax ginseng extract on energy metabolism during exercise in rats. Planta Med 50(2):151–154

    CAS  PubMed  Google Scholar 

  • Bae JW, Lee MH (2004) Effect and putative mechanism of action of ginseng on the formation of glycated haemoglobin in vitro. J Ethnopharmacol 91(1):137–140

    CAS  PubMed  Google Scholar 

  • Bae EA, Park SY, Kim DH (2000) Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull (Tokyo) 23(12):1481–1485

    CAS  Google Scholar 

  • Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH (2002a) Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull (Tokyo) 25(6):743–747

    CAS  Google Scholar 

  • Bae EA, Han MJ, Choo MK, Park SY, Kim DH (2002b) Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull (Tokyo) 25(1):58–63

    CAS  Google Scholar 

  • Bae EA, Han MJ, Kim EJ, Kim DH (2004) Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 27(1):61–67

    CAS  PubMed  Google Scholar 

  • Bae EA, Han MJ, Shin YW, Kim DH (2006) Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol Pharm Bull 29(9):1862–1867

    CAS  PubMed  Google Scholar 

  • Bae HM, Cho OS, Kim SJ, Im BO, Cho SH, Lee S, Kim MG, Kim KT, Leem KH, Ko SK (2012) Inhibitory effects of ginsenoside re isolated from ginseng berry on histamine and cytokine release in human mast cells and human alveolar epithelial cells. J Ginseng Res 36(4):369–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bae MK, Jang SG, Lim JW, Kang JE, Bak EJ, Cha JH, Kim HY (2014) Protective effect of Korean Red Ginseng extract against Helicobacter pylori-induced gastric inflammation in Mongolian gerbils. J Ginseng Res 38(1):8–15

    PubMed Central  PubMed  Google Scholar 

  • Baek NI, Kim DS, Lee YH, Park JD, Lee CB, Kim SI (1996) Ginsenoside Rh4, a genuine dammarane glycoside from Korean Red Ginseng. Planta Med 62(01):86–87

    CAS  PubMed  Google Scholar 

  • Baek SH, Lee JG, Park SY, Bae ON, Kim DH, Park JH (2010) Pectic polysaccharides from Panax ginseng as the antirotavirus principals in ginseng. Biomacromolecules 11(8):2044–2052

    CAS  PubMed  Google Scholar 

  • Bahrke MS, Morgan WP (1994) Evaluation of the ergogenic properties of ginseng. Sports Med 18(4):229–248

    CAS  PubMed  Google Scholar 

  • Banerjee U, Izquierdo JA (1982) Antistress and antifatigue properties of Panax ginseng: comparison with piracetam. Acta Physiol Lat Am 32(4):277–285

    CAS  PubMed  Google Scholar 

  • Banz WJ, Iqbal MJ, Bollaert M, Chickris N, James B, Higginbotham DA, Peterson R, Murphy L (2007) Ginseng modifies the diabetic phenotype and genes associated with diabetes in the male ZDF rat. Phytomedicine 14(10):681–689

    CAS  PubMed  Google Scholar 

  • Besso H, Kasai R, Saruwatari Y, Fuwa T, Tanaka O (1982) Ginsenoside-Ra1 and ginsenoside-Ra2, new dammarane-saponins of ginseng roots. Chem Pharm Bull 30(7):2380–2385

    CAS  Google Scholar 

  • Bhattacharya SK, Mitra SK (1991) Anxiolytic activity of Panax ginseng roots: an experimental study. J Ethnopharmacol 34(1):87–92

    CAS  PubMed  Google Scholar 

  • Bing SJ, Kim MJ, Ahn GN, Im JH, Kim DS, Ha DB, JCho JH, Kim A, Jee YH (2014) Acidic polysaccharide of Panax ginseng regulates the mitochondria/caspase-dependent apoptotic pathway in radiation-induced damage to the jejunum in mice. Acta Histochem 116(3):514–521

    CAS  PubMed  Google Scholar 

  • Bitties AH, Fulder SJ, Grant EC, Nicholls M (1979) The effect of ginseng on lifespan and stress responses in mice. Gerontology 25(3):125–131

    Google Scholar 

  • Brankovic S, Radenkovic M, Veljkovic S, Kitic D, Ivetic V, Pavlovic D, Miladinovic B (2011) Comparison of the hypotensive and bradycardic activity of ginkgo, garlic, and onion extracts. Clin Exp Hypertens 33(2):95–99

    PubMed  Google Scholar 

  • Braz AS, Morais LCS, Paula AP, Diniz MFFM, Almeida RN (2013) Effects of Panax ginseng extract in patients with fibromyalgia: a 12-week, randomized, double-blind, placebo-controlled trial. Rev Bras Pisquiatr 35(1):21–28

    Google Scholar 

  • Cabral de Oliveira AC, Perez AC, Merino G, Prieto JG, Alvarez AI (2001) Protective effects of Panax ginseng on muscle injury and inflammation after eccentric exercise. Comp Biochem Physiol C Toxicol Pharmacol 130(3):369–377

    CAS  PubMed  Google Scholar 

  • Cabral de Oliveira AC, Perez AC, Prieto JG, Duarte IDG, Alvarez AI (2005) Protection of Panax ginseng in injured muscles after eccentric exercise. J Ethnopharmacol 97(2):211–214

    CAS  PubMed  Google Scholar 

  • Cai JP, Wu YJ, Li C, Feng MY, Shi QT, Li R, Wang ZY, Geng JS (2013) Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer. Int J Biol Macromol 57:22–25

    CAS  PubMed  Google Scholar 

  • Caron MF, Hotsko AL, Robertson S, Mandybur L, Kluger J, White CM (2002) Electrocardiographic and hemodynamic effects of Panax ginseng. Ann Pharmacother 36(5):758–763

    PubMed  Google Scholar 

  • Carr MN, Bekku N, Yoshimura H (2006) Identification of anxiolytic ingredients in ginseng root using the elevated plus-maze test in mice. Eur J Pharmacol 531(1–3):160–165

    CAS  PubMed  Google Scholar 

  • Chang TL, Huang YH, Ou YD (2014) The role of ginsenosides in inhibiting ubiquitin activating enzyme (E1) activity. J Funct food 7:462–470

    CAS  Google Scholar 

  • Chen X (1996) Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin Exp Pharmacol Physiol 23(8):728–732

    CAS  PubMed  Google Scholar 

  • Chen YJ, Zhang SL, Wang ZX, Lu YJ, Xu SX, Yao XS, Cui CB, Tezuka Y, Kikuchi T, Ogihara Y (1990) Isolation and elucidation of a new minor saponin from the leaves of Panax ginseng C.A. Meyer. Yao Xue Xue Bao 25(5):379–381 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Chen XG, Liu HY, Lei XH, Fu ZD, Li Y, Tao LH, Han R (1998) Cancer chemopreventive and therapeutic activities of red ginseng. J Ethnopharmacol 60(1):71–78

    Google Scholar 

  • Chen X, Zhang J, Liu JH, Yu BY (2008) Biotransformation of p-, m-, and o-hydroxybenzoic acids by Panax ginseng hairy root cultures. J Mol Catal B: Enzym 54(3–4):72–75

    CAS  Google Scholar 

  • Chen D, Zuo G, Li C, Hu X, Guan T, Jiang R, Li J, Lin X, Li F, Luo C, Wang H, Lei C, Long X, Wang Y, Wan J (2009) Total saponins of Panax ginseng (TSPG) promote erythroid differentiation of human CD34+ cells via EpoR-mediated JAK2/STAT5 signaling pathway. J Ethnopharmacol 126(2):215–220

    CAS  PubMed  Google Scholar 

  • Chen WX, Zhao Y, Yang Q, Wang J, Wang YX, Zhang LX (2010) Analysis of fatty acid components in different strains Panax ginseng C. A. Mey. by GC-MS. Med Plant 1(7):70–72

    Google Scholar 

  • Cheng YJ, Su SX, Ma QF, Pei YP, Xie H, Yao XS (1987) Studies on new minor saponins isolated from leaves of Panax ginseng C. A. Meyer. Yao Xue Xue Bao 22(9):685–689 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Cheng CC, Yang SM, Huang CY, Chen JC, Chang WM, Hsu SL (2005) Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Cancer Chemother Pharmacol 55(6):531–540

    CAS  PubMed  Google Scholar 

  • Cho IH (2012) Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 36(4):342–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho EJ, Cho SH (2013) Effects of Korean red ginseng extract on the prevention of atopic dermatitis and its mechanism on early lesions in a murine model. J Ethnopharmacol 145(1):294–302

    CAS  PubMed  Google Scholar 

  • Cho YK, Sung HS, Lee HJ, Joo CH, Cho GJ (2001) Long-term intake of Korean red ginseng in HIV-1-infected patients: development of resistance mutation to zidovudine is delayed. Int Immunopharmacol 1(7):1295–1305

    CAS  PubMed  Google Scholar 

  • Cho WCS, Chung WS, Lee SKW, Leung AWN, Cheng CHK, Yue KKM (2006) Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur J Pharmacol 550(1–3):173–179

    CAS  PubMed  Google Scholar 

  • Cho EJ, Piao XL, Jang MH, Baek SH, Kim HY, Kang KS, Kwon SW, Park JH (2008) The effect of steaming on the free amino acid contents and antioxidant activity of Panax ginseng. Food Chem 107(2):876–882

    CAS  Google Scholar 

  • Cho IH, Lee HJ, Kim YS (2012) Differences in the volatile compositions of ginseng species (Panax sp.). J Agric Food Chem 60(31):7616–7622

    CAS  PubMed  Google Scholar 

  • Cho JG, Lee DY, Shrestha S, Lee SK, Kang HM, Son SH, Yang DC, Baek NI (2013a) Three new ginsenosides from the heat-processed roots of Panax ginseng. Chem Nat Compd 49(5):882–887

    CAS  Google Scholar 

  • Cho KS, Park CW, Kim CK, Jeon HY, Kim WG, Lee SJ, Kim YM, Lee JY, Choi YD (2013b) Effects of Korean ginseng berry extract (GB0710) on penile erection: evidence from in vitro and in vivo studies. Asian J Androl 15(4):503–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SO, Lim JW, Kim H (2013c) Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori-infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3. J Ethnopharmacol 150(2):761–764

    CAS  PubMed  Google Scholar 

  • Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharm Sin 29(9):1109–1118

    CAS  Google Scholar 

  • Choi YD, Xin ZC, Choi HK (1998) Effect of Korean red ginseng on the rabbit corpus cavernosal smooth muscle. Int J Impot Res 10(1):37–43

    CAS  PubMed  Google Scholar 

  • Choi YD, Rha KH, Choi HK (1999) In vitro and in vivo experimental effect of Korean red ginseng on erection. J Urol 162(4):1508–1511

    CAS  PubMed  Google Scholar 

  • Choi CH, Kang G, Min YD (2003) Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med 69(3):235–240

    CAS  PubMed  Google Scholar 

  • Choi SJ, Kim TH, Shin YK, Lee CS, Park M, Lee HS, Song JH (2008) Effects of a polyacetylene from Panax ginseng on Na + currents in rat dorsal root ganglion neurons. Brain Res 1191:75–83

    CAS  PubMed  Google Scholar 

  • Choi JE, Li X, Han YH, Lee KT (2009) Changes of saponin contents of leaves, stems and flower-buds of Panax ginseng C.A. Meyer by harvesting days. Korean J Med Crop Sci 17:251–256

    Google Scholar 

  • Choi JH, Jin SW, Park BH, Kim HG, Khanal T, Han HW, Hwang YP, Choi JM, Chung YC, Hwang SK, Jeong TC, Jeong HG (2013) Cultivated ginseng inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC activation in HaCaT cells. Food Chem Toxicol 56:195–203

    CAS  PubMed  Google Scholar 

  • Chon SU, Kim YM (2011) Differential physiological activity in different ages of Panax ginseng. Korean J Crop Sci 56(1):80–87

    Google Scholar 

  • Chong SKF, Brown HA, Oberholzer V, Walker-Smith JA (1982) Effect of ginseng saponins and hydrocortisone on phytohaemagglutinin transformation of lymphocytes. Lancet 320(8299):663–664

    Google Scholar 

  • Choo MK, Park EK, Han MJ, Kim DH (2003) Antiallergic activity of ginseng and its ginsenosides. Planta Med 69(6):518–522

    CAS  PubMed  Google Scholar 

  • Chu AH, Gu JF, Feng L, Liu JP, Zhang MH, Jia XB, Liu M, Yao DN (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 19(2):317–326

    CAS  PubMed  Google Scholar 

  • Chung IM, Kim JW, Seguin P, Jun YM, Kim SH (2012) Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C.A. Meyer): effects of cultivation location, year, and storage. Food Chem 130(1):73–83

    CAS  Google Scholar 

  • Dabrowski Z, Wrobel JT, Wojtasiewiz K (1980) Structure of an acetylenic compound from Panax ginseng. Phytochemistry 19(11):2464–2465

    CAS  Google Scholar 

  • D’angelo L, Grimaldi R, Caravaggi M, Marcoli M, Perucca E, Lecchini S, Frigo GM, Crema A (1986) A double-blind, placebo-controlled clinical study on the effect of a standardized ginseng extract on psychomotor performance in healthy volunteers. J Ethnopharmacol 16(1):15–22

    PubMed  Google Scholar 

  • De Souza LR, Jenkins AL, Sievenpiper JL, Jovanovski E, Rahelić D, Vuksan V (2011) Korean red ginseng (Panax ginseng C.A. Meyer) root fractions: differential effects on postprandial glycemia in healthy individuals. J Ethnopharmacol 137(1):245–250

    PubMed  Google Scholar 

  • Dega H, Laporte JL, Frances C, Herson S, Chosidow O (1996) Ginseng as a cause for Stevens-Johnson syndrome? Lancet 347:1344

    CAS  PubMed  Google Scholar 

  • Deng J, Lv XT, Wu Q, Huang XN (2009) Ginsenoside Rg1 inhibits rat left ventricular hypertrophy induced by abdominal aorta coarctation: involvement of calcineurin and mitogen-activated protein kinase signalings. Eur J Pharmacol 608(1–3):42–47

    CAS  PubMed  Google Scholar 

  • Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS (2003) Anti-hyperglycemic effects of ginseng: comparison between root and berry. Phytomedicine 10(6–7):600–605

    CAS  PubMed  Google Scholar 

  • Ding JY, Chen Q, Xiang DJ, He X (1993) Studies on medicinal products from Panax ginseng cell culture. In: You CB, Chen ZL, Ding Y (eds) Biotechnology in agriculture. Springer, Amsterdam, pp 291–295

    Google Scholar 

  • Dou DQ, Chen YJ, Liang LH, Pang FG, Shimizu N, Takeda T (2001) Six new dammarane-type triterpene saponins from the leaves of Panax ginseng. Chem Pharm Bull (Tokyo) 49(4):442–446

    CAS  Google Scholar 

  • Duan Y, Zheng J, Law V, Nicholson R (2006) Natural products from ginseng inhibit [3H]batrachotoxinin A 20-α-benzoate binding to Na + channels in mammalian brain. Eur J Pharmacol 530(1–2):9–14

    CAS  PubMed  Google Scholar 

  • Elyakov GB, Strigina LI, Khorin AYa, Kochetkov NK (1962) Glycosides from ginseng roots. Isvest Acad Nauk USSR 2054 (In Russian)

    Google Scholar 

  • Elyakov GB, Strigina LI, Uvarova NI, Vaskovshy VE, Dzizenko AK, Kochetkov NK (1964) Glycosides from ginseng roots. Tetrahedron Lett 5(48):3591–3597

    Google Scholar 

  • Elyakov GB, Strigina LI, Kochetkov NK (1965a) Glycosides from ginseng roots. VI. Structure of the carbohydrate chain of panaxoside A. Chem Nat Compd 1(3):114–116

    Google Scholar 

  • Elyakov GB, Uvarova NI, Gorshkova RP (1965b) The structure of carbohydrate chains of panaxosides D, E, F. Tetrahedron Lett 6(51):4669–4674

    Google Scholar 

  • Fahim MS, Fahim Z, Harman JM, Clevenger TE, Mullins W, Hafez ES (1982) Effect of Panax ginseng on testosterone level and prostate in male rats. Arch Androl 8(4):261–263

    CAS  PubMed  Google Scholar 

  • Fan YY, Cheng HR, Liu D, Zhang X, Wang B, Sun L, Tai GH, Zhou YF (2010) The inhibitory effect of ginseng pectin on L-929 cell migration. Arch Pharm Res 33(5):681–689

    CAS  PubMed  Google Scholar 

  • Fang C, Liu YL, Lu P, Liang QD, Liu XY, Zhao WX, Su W (2011) Total saponins of Panax ginseng inhibiting human endothelium cells’ damages induced by angiotensin II via AT1 receptor. J Ethnopharmacol 138(2):439–444

    Google Scholar 

  • Fei XF, Wang BX, Tashiro S, Li TJ, Ma JS, Ikejima T (2002) Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells. Acta Pharmacol Sin 23(4):315–322

    CAS  PubMed  Google Scholar 

  • Fujimoto Y, Satoh M (1987) Acetylenes from the callus of Panax ginseng. Phytochemistry 26(10):2850–2852

    CAS  Google Scholar 

  • Fujimoto Y, Satoh M (1988) A new cytotoxic chlorine-containing polyacetylene from the callus of Panax ginseng. Chem Pharm Bull (Tokyo) 36(10):4206–4208

    CAS  Google Scholar 

  • Fujita M, Itokawa H, Shibata S (1962) Chemical studies on ginseng. I. Isolation of saponin and sapogenin from radix ginseng. Yakugaku Zasshi 82(12):1634–1638

    CAS  PubMed  Google Scholar 

  • Fukuyama N, Shibuya M, Orihara Y (2012) Antimicrobial polyacetylenes from Panax ginseng hairy root culture. Chem Pharm Bull (Tokyo) 60(3):377–380

    CAS  Google Scholar 

  • Furuya T, Kojima H, Syono K, Ishii T (1970) Isolation of panaxatriol from Panax ginseng callus. Chem Pharm Bull 18(11):2371–2372

    CAS  Google Scholar 

  • Furuya T, Kojima H, Syono K, Ishii T, Uotani K (1973) Isolation of saponins and sapogenins from callus tissue of Panax ginseng. Chem Pharm Bull (Tokyo) 21(1):98–101

    CAS  Google Scholar 

  • Furuya T, Ushiyama M, Asada Y, Yoshikawa T (1989) Biotransformation of 2-phenylpropionic acid in root culture of Panax ginseng. Phytochemistry 28(2):483–487

    CAS  Google Scholar 

  • Gao QP, Kiyohara H, Cyong JC, Yamada H (1988) Characterisation of anti-complementary acidic heteroglycans from the leaves of Panax ginseng C.A. Meyer. Carbohydr Res 181(1):175–187

    CAS  Google Scholar 

  • Gao QP, Kiyohara H, Yamada H (1990) Further structural studies of anti-complementary acidic heteroglycans from the leaves of Panax ginseng C.A. Meyer. Carbohydr Res 196:115–125

    Google Scholar 

  • Gao XQ, Yang CX, Chen GJ, Wang GY, Chen B, Tan SK, Liu J, Yuan QL (2010) Ginsenoside Rb1 regulates the expressions of brain-derived neurotrophic factor and caspase-3 and induces neurogenesis in rats with experimental cerebral ischemia. J Ethnopharmacol 132(2):393–399

    CAS  PubMed  Google Scholar 

  • Gao Y, Deng J, Yu XF, Yang DL, Gong QH, Huang XN (2011) Ginsenoside Rg1 inhibits vascular intimal hyperplasia in balloon-injured rat carotid artery by down-regulation of extracellular signal-regulated kinase 2. J Ethnopharmacol 138(2):472–478

    CAS  PubMed  Google Scholar 

  • Gao HW, Zhang MM, Xu YL, Liu QM, Yang SL (2013a) Anticomplement activity of ginsenosides from Panax ginseng. J Funct Food 5(1):498–502

    CAS  Google Scholar 

  • Gao Y, Yang MF, Su YP, Jiang HM, You XJ, Yang YJ, Zhang HL (2013b) Ginsenoside Re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production. J Ethnopharmacol 147(2):509–516

    CAS  PubMed  Google Scholar 

  • Garriques SS (1854) On panaquilone, a new vegetable substance. Ann Chem Pharm 90:231

    Google Scholar 

  • Gommori K, Miyamoto F, Shibata Y, Higashi T, Sanada S, Shoji J (1976) Effects of ginseng saponins on cholesterol metabolism. II. Effect of ginsenosides on cholesterol synthesis by liver slice. Chem Pharm Bull (Tokyo) 24(12):2985–2987

    CAS  Google Scholar 

  • Greenspan EM (1983) Ginseng and vaginal bleeding [letter]. JAMA 249:2018

    CAS  PubMed  Google Scholar 

  • Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, Lv T, Zheng YT, Sai Y (2009) Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem Toxicol 47(9):2257–2268

    CAS  PubMed  Google Scholar 

  • Gu J, Li W, Xiao D, Wei SN, Cui WL, Chen WJ, Hu YL, Bi XJ, Kim YC, Li J, Du HW, Zhang M, Chen L (2013) Compound K, a final intestinal metabolite of ginsenosides, enhances insulin secretion in MIN6 pancreatic β-cells by upregulation of GLUT2. Fitoterapia 87:84–88

    CAS  PubMed  Google Scholar 

  • Guan QX, De- Sun DY, Liu JH, Li W, Meng Q, Geng C, Yin JY (2013) A new ginsengenin containing an oxacyclopentane-ring isolated from the acid hydrolysate of total ginsenosides. Chin Chem Lett 24(6):524–526

    CAS  Google Scholar 

  • Gum SI, Jo SJ, Ahn SH, Kim SG, Kim JT, Shin HM, Cho MK (2007) The potent protective effect of wild ginseng (Panax ginseng C.A. Meyer) against benzo[α]pyrene-induced toxicity through metabolic regulation of CYP1A1 and GSTs. J Ethnopharmacol 112(3):568–576

    CAS  PubMed  Google Scholar 

  • Guo LC, Song L, Wang ZJ, Zhao WJ, Mao WW, Yin M (2009) Panaxydol inhibits the proliferation and induces the differentiation of human hepatocarcinoma cell line HepG2. Chem Biol Interact 181(1):138–143

    CAS  PubMed  Google Scholar 

  • Hallstrom C, Fulder S, Carruthers M (1982) Effects of ginseng on the performance of nurses on night duty. Comp Med East West 6(4):277–282

    Google Scholar 

  • Han YM, Rhew KY (2013) Ginsenoside Rd induces protective anti-Candida albicans antibody through immunological adjuvant activity. Int Immunopharmacol 17(3):651–657

    CAS  PubMed  Google Scholar 

  • Han BH, Park MH, Han YN, Woo LK (1986) Alkaloidal components of Panax ginseng. Arch Pharm Res 9(1):21–23

    CAS  Google Scholar 

  • Han YN, Ryu SY, Han BH, Woo LK (1987) Spinacine from Panax ginseng. Arch Pharm Res 10(4):258–259

    CAS  Google Scholar 

  • Han KH, Choe SC, Kim HS, Sohn DW, Nam KY, Oh BH, Lee MM, Park YB, Choi YS, Seo JD, Lee YW (1998) Effect of red ginseng on blood pressure in patients with essential hypertension and white coat hypertension. Am J Chin Med 26(2):199–209

    CAS  PubMed  Google Scholar 

  • Han SK, Song JY, Yun YS, Yi SY (2005) Ginsan improved Th1 immune response inhibited by gamma radiation. Arch Pharm Res 28(3):343–350

    CAS  PubMed  Google Scholar 

  • Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71(1):36–46

    CAS  PubMed  Google Scholar 

  • Han HJ, Kim HY, Choi JJ, Ahn SY, Lee SH, Oh KW, Kim SY (2013) Effects of red ginseng extract on sleeping behaviors in human volunteers. J Ethnopharmacol 149(2):597–599

    CAS  PubMed  Google Scholar 

  • Hao K, Gong P, Sun SQ, Hao HP, Wang GJ, Dai Y, Liang Y, Xie L, Li FY (2011) Beneficial estrogen-like effects of ginsenoside Rb1, an active component of Panax ginseng, on neural 5-HT disposition and behavioral tasks in ovariectomized mice. Eur J Pharmacol 659(1):15–25

    CAS  PubMed  Google Scholar 

  • Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol 75:31–49

    CAS  PubMed  Google Scholar 

  • Hasegawa E, Nakagawa S, Miyate Y, Takahashi K, Ohta S, Tachikawa E, Yamato S (2013) Inhibitory effect of protopanaxatriol ginseng metabolite M4 on the production of corticosteroids in ACTH-stimulated bovine adrenal fasciculata cells. Life Sci 92(12):687–693

    CAS  PubMed  Google Scholar 

  • Hashimoto K, Satoh K, Murata P, Makino B, Sakakibara I, Kase Y, Ishige A, Higuchi M, Sasaki H (2003) Components of Panax ginseng that improve accelerated small intestinal transit. J Ethnopharmacol 84(1):115–119

    PubMed  Google Scholar 

  • Hassan AM, Abdel-Aziem SH, El-Nekeety AA, Abdel-Wahhab MA (2014) Panax ginseng extract modulates oxidative stress, DNA fragmentation and up-regulate gene expression in rats sub chronically treated with aflatoxin B1 and fumonisin B1. Cytotechnology (in press)

    Google Scholar 

  • He B, Chen P, Yang JY, Yun Y, Zhang XC, Yang RH, Shen ZQ (2012) Neuroprotective effect of 20(R)-ginsenoside Rg3 against transient focal cerebral ischemia in rats. Neurosci Lett 526(2):106–111

    CAS  PubMed  Google Scholar 

  • Herrmann F, Sporer F, Tahrani A, Wink M (2013) Antitrypanosomal properties of Panax ginseng C. A. Meyer: new possibilities for a remarkable traditional drug. Phytother Res 27(1):86–98

    CAS  PubMed  Google Scholar 

  • Hiai S, Oura H, Tsukada K, Hirai Y (1971) Stimulating effect of Panax ginseng extract on RNA polymerase activity in rat liver nuclei. Chem Pharm Bull 19(8):1656–1663

    CAS  PubMed  Google Scholar 

  • Hiai G, Sasaki S, Oura H (1979) Effect of ginseng saponin on rat adrenal cyclic AMP. Planta Med 37:15–19

    CAS  PubMed  Google Scholar 

  • Hiai S, Yokoyama H, Oura H, Kawashima Y (1983) Evaluation of corticosterone secretion-inducing activities of ginsenosides and their prosapogenins and sapogenins. Chem Pharm Bull 31(1):168–174

    CAS  PubMed  Google Scholar 

  • Himi T, Saito H, Nishiyama N (1989) Effect of ginseng saponins on the survival of cerebral cortex neurons in cell cultures. Chem Pharm Bull 37(2):481–484

    CAS  PubMed  Google Scholar 

  • Hirakura K, Morita M, Nakajima K, Ikeya Y, Mitsuhashi H (1991a) Polyacetylenes from the roots of Panax ginseng. Phytochemistry 30(10):3327–3333

    CAS  Google Scholar 

  • Hirakura K, Morita N, Nakajima K, Ikeya Y, Mitsuhashi H (1991b) The constituents of Panax ginseng. Part 2. Three acetylated polyacetylenes from the roots of Panax ginseng. Phytochemistry 30(12):4053–4055

    CAS  Google Scholar 

  • Hirakura K, Morita N, Nakajima K, Ikeya Y, Mitsuhashi H (1992) Three acetylenic compounds from roots of Panax ginseng. Phytochemistry 31(3):899–903

    CAS  Google Scholar 

  • Hirakura K, Morita N, Niitsu K, Ikeya Y, Maruno M (1994) Linoleoylated polyacetylenes from the root of Panax ginseng. Phytochemistry 35(4):963–967

    CAS  Google Scholar 

  • Hirakura K, Takagi H, Morita M, Nakajima K, Niitsu K, Sasaki H, Maruno M, Okada M (2000) Cytotoxic activity of acetylenic compounds from Panax ginseng. Nat Med 54(6):342–345

    CAS  Google Scholar 

  • Hiyama C, Miyai S, Yoshida H, Yamasaki K, Tanaka O (1978) Application of high-speed liquid chromatography and dual wave-length thin-layer chromatograph-densitometry to analysis of crude drugs: nucleosides and free bases of nucleic acids in ginseng roots. Yakugaku Zasshi 98(8):1132–1137, In Japanese

    CAS  PubMed  Google Scholar 

  • Hong BS, Ji YH, Hong JH, Nam KY, Ahn TY (2002) A double-blind crossover study evaluating the efficacy of Korean red ginseng in patients with erectile dysfunction: a preliminary report. J Urol 168(5):2070–2073

    CAS  PubMed  Google Scholar 

  • Hong BN, Kim SY, Yi TH, Kang TH (2011) Post-exposure treatment with ginsenoside compound K ameliorates auditory functional injury associated with noise-induced hearing loss in mice. Neurosci Lett 487(2):217–222

    CAS  PubMed  Google Scholar 

  • Hong YJ, Kim NY, Lee K, Sonn CH, Lee JE, Kim ST, Baeg IH, Lee KM (2012) Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. J Ethnopharmacol 144(2):225–233

    CAS  PubMed  Google Scholar 

  • Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MY, Han SH, Kim MY, Baik SK, Kim DJ, Lee GJ, Lee SK, Park SH, Ryu OH (2013) Anti-oxidant and natural killer cell activity of Korean red ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on non-alcoholic fatty liver disease of rat. Food Chem Toxicol 55:586–591

    CAS  PubMed  Google Scholar 

  • Hopkins MP, Androff L, Benninghoff AS (1988) Ginseng face cream and unexplained vaginal bleeding. Am J Obstet Gynaecol 150(5):1121–1122

    Google Scholar 

  • Horhanmer L, Wagner H, Loy B (1961) Contents of Panax ginseng root. Preliminary report. Pharm Ztg 106:1307–1311

    Google Scholar 

  • Hou JP (1977) The chemical constituents of ginseng plants. Comp Med East West 5(2):123–145

    CAS  PubMed  Google Scholar 

  • Hu SY (1976) The genus Panax (ginseng) in Chinese medicine. Econ Bot 30(1):11–28

    Google Scholar 

  • Hu SY (2005) Food plants of China. The Chinese University Press, Hong Kong, 844pp

    Google Scholar 

  • Hu SQ, Han RW, Mak SH, Han YF (2011) Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. J Ethnopharmacol 135(1):34–42

    CAS  PubMed  Google Scholar 

  • Hu W, Liu N, Tian YH, Zhang LX (2013) Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng. Biomed Res Int 2013:285740

    PubMed Central  PubMed  Google Scholar 

  • Huh BH, Lee IR, Han BH (1990) Lingans from Korean red ginseng. Arch Pharm Res 13(3):278–281

    CAS  Google Scholar 

  • Hwang HJ, Kim EH, Cho YD (2001) Isolation and properties of arginase from a shade plant, ginseng (Panax ginseng C. A. Meyer) roots. Phytochemistry 58(7):1015–1024

    CAS  PubMed  Google Scholar 

  • Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY (2007) Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 364(4):1002–1008

    CAS  PubMed  Google Scholar 

  • Hwang SY, Son DJ, Kim IW, Kim DM, Sohn SH, Lee JJ, Kim SK (2008) Korean red ginseng attenuates hypercholesterolemia-enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother Res 22(6):778–783

    CAS  PubMed  Google Scholar 

  • Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY (2009) Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways. Phytother Res 23(2):262–266

    CAS  PubMed  Google Scholar 

  • Hwang IG, Kim HY, Joung EM, Woo KS, Jeong JH, Yu KW, Lee JS, Jeong HS (2010) Changes in ginsenosides and antioxidant activity of Korean ginseng (Panax ginseng CA Meyer) with heating temperature and pressure. Food Sci Biotechnol 19(4):941–949

    CAS  Google Scholar 

  • Hwang IS, Ahn GN, Park EJ, Ha DB, Song JY, Jee YH (2011) An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 138(2):169–178

    CAS  PubMed  Google Scholar 

  • Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, Lee JH, Kang JY, Kim HJ, Park CW, Shin HC, Nah SY (2012a) Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 33(2):151–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang JY, Kim HJ, Kwon SH, Jang CG, Lee JH, Kim HC, Nah SY (2012b) Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer’s disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheimer’s Dis 31(1):207–223

    CAS  Google Scholar 

  • Hwang JA, Hwang MK, Jang YW, Lee EJ, Kim JE, Oh MH, Shin DJ, Lim S, Ji GO, Oh UT, Bode AM, Dong ZG, Lee KW, Lee HJ (2013a) 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginseng, inhibits colon cancer growth by targeting TRPC channel-mediated calcium influx. J Nutr Biochem 24(6):1096–1104

    Google Scholar 

  • Hwang SH, Lee BH, Kim HJ, Cho HJ, Shin HC, Im KS, Choi SH, Shin TJ, Lee SM, Nam SW, Kim HC, Rhim H, Nah SY (2013b) Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: involvement of autotaxin inhibition. Int J Oncol 42(1):317–326

    CAS  PubMed  Google Scholar 

  • Hwang CR, Lee SH, Jang GY, Hwang IG, Kim HY, Woo KS, Lee JS, Jeong HS (2014) Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J Ginseng Res 38(3):180–186

    PubMed Central  PubMed  Google Scholar 

  • Iida Y, Tanaka O, Shibata S (1968) Studies on saponins of ginseng: the structure of ginsenoside-Rg1. Tetrahedron Lett 9(52):5449–5453

    Google Scholar 

  • Iijima M, Higashi T, Sanada S, Shoji J (1976) Effect of ginseng saponins on nuclear ribonucleic acid (RNA) metabolism. I. RNA synthesis in rats treated with ginsenosides. Chem Pharm Bull 24(10):2400–2405

    CAS  PubMed  Google Scholar 

  • Ikehara M, Shibata Y, Higashi T, Sanada S, Shoji J (1978) Effect of ginseng saponins on cholesterol metabolism. III. Effect of ginsenoside-Rb on cholesterol synthesis in rats fed on high-fat diet. Chem Pharm Bull (Tokyo) 26(9):2844–2854

    CAS  Google Scholar 

  • Inoue M, Wu CZ, Dou DQ, Chen YJ, Ogihara Y (1999) Lipoprotein lipase activation by red ginseng saponins in hyperlipidemia model animals. Phytomedicine 6(4):257–265

    CAS  PubMed  Google Scholar 

  • Ishizu T, Fujiwara M, Yagi A, Noguchi S (1998) Solution conformation of ginseng tetrapeptide H-L-Val-γ-D-Glu-D-Arg-Gly-OH. Chem Pharm Bull 46(4):690–692

    CAS  Google Scholar 

  • Ivanova T, Han Y, Son HJ, Yun YS, Song JY (2006) Antimutagenic effect of polysaccharide ginsan extracted from Panax ginseng. Food Chem Toxicol 44(4):517–521

    CAS  PubMed  Google Scholar 

  • Iwabuchi H, Yoshikura M, Ikawa Y, Kamisako W (1987) Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. Isolation and structure determination of sesquiterpene alcohols, panasinsanols A and B. Chem Pharm Bull 35(5):1975–1981

    CAS  PubMed  Google Scholar 

  • Iwabuchi H, Yoshikura M, Kamisako W (1988) Studies on the sesquiterpenoids of Panax ginseng C.A. Meyer. II: isolation and structure determination of ginsenol, a novel sesquiterpene alcohol. Chem Pharm Bull 36(7):2447–2451

    CAS  PubMed  Google Scholar 

  • Iwabuchi H, Kato N, Yoshikura M (1990) Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. IV. Chem Pharm Bull 38(5):1405–1407

    CAS  PubMed  Google Scholar 

  • Jang SE, Jung IH, Joh EH, Han MJ, Kim DH (2012) Antibiotics attenuate anti-scratching behavioral effect of ginsenoside Re in mice. J Ethnopharmacol 142(1):105–112

    CAS  PubMed  Google Scholar 

  • Jeon BH, Kim CS, Park KS, Lee JW, Park JB, Kim KJ, Kim SH, Chang SJ, Nam KY (2000) Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. Gen Pharmacol Vasc Syst 35(3):135–141

    CAS  Google Scholar 

  • Jeon JM, Choi SK, Kim YJ, Jang SJ, Cheon JW, Lee HS (2011) Antioxidant and antiaging effect of ginseng berry extract fermented by lactic acid bacteria. J Soc Cosmet Sci Korea 37:75–81

    Google Scholar 

  • Jeong GT, Park DH, Ryu HW, Hwang B, Woo JC, Kim D, Kim SW (2005) Production of antioxidant compounds by culture of Panax ginseng CA Meyer hairy roots. In: Davison BH (ed) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, pp 1147–1157

    Google Scholar 

  • Jia W, Bu X, Philips D, Yan H, Liu G, Chen X, Bush JA, Li G (2004) Rh2, a compound extracted from ginseng, hypersensitzes multidrug-resistant tumor cells to chemotherapy. Can J Physiol Pharmacol 82:431–437

    CAS  PubMed  Google Scholar 

  • Jiang Y, Zhong GG, Chen L, Ma XY (1992) Influences of ginsenosides Rb1, Rb2, and Rb3 on electric and contractile activities of normal and damaged cultured myocardiocytes. Zhongguo Yao Li Xue Bao 13(5):403–406 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Jiang QS, Huang XN, Dai ZK, Yang GZ, Zhou QX, Shi JS, Wu Q (2007) Inhibitory effect of ginsenoside Rb1 on cardiac hypertrophy induced by monocrotaline in rat. J Ethnopharmacol 111(3):567–572

    CAS  PubMed  Google Scholar 

  • Jiang S, Ren D, Li J, Yuan G, Li H, Xu G, Han X, Du P, An L (2014) Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia 95C:58–64

    Google Scholar 

  • Jiao LL, Wan DB, Zhang XY, Li B, Zhao HX, Liu SY (2012) Characterization and immunostimulating effects on murine peritoneal macrophages of oligosaccharide isolated from Panax ginseng C.A. Meyer. J Ethnopharmacol 144(3):490–496

    CAS  PubMed  Google Scholar 

  • Jiao LL, Li B, Wang MZ, Liu Z, Zhang XY, Liu SY (2014a) Antioxidant activities of the oligosaccharides from the roots, flowers and leaves of Panax ginseng C.A. Meyer. Carbohydr Polym 106:293–298

    CAS  PubMed  Google Scholar 

  • Jiao LL, Zhang XY, Li B, Liu Z, Wang MZ, Liu SY (2014b) Anti-tumour and immunomodulatory activities of oligosaccharides isolated from Panax ginseng C.A. Meyer. Int J Biol Macromol 65:229–233

    CAS  PubMed  Google Scholar 

  • Jin SH, Park JK, Nam KY, Park SN, Jung NP (1999) Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. J Ethnopharmacol 66(2):123–129

    CAS  PubMed  Google Scholar 

  • Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS, Wee JJ, Yun YP (2007) Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 100(3):170–175

    CAS  PubMed  Google Scholar 

  • Jo SS, Lee HK, Kim SJ, Lee CH, Chung HY (2013) Korean red ginseng extract induces proliferation to differentiation transition of human acute promyelocytic leukemia cells via MYC-SKP2-CDKN1B axis. J Ethnopharmacol 150(2):700–707

    CAS  PubMed  Google Scholar 

  • Joh EH, Lee IA, Jung IH, Kim DH (2011) Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation -the key step of inflammation. Biochem Pharmacol 82(3):278–286

    CAS  PubMed  Google Scholar 

  • Jones BD, Runikis AM (1987) Interaction of ginseng with phenelzine [letter]. J Clin Psychopharmacol 7:201–202

    CAS  PubMed  Google Scholar 

  • Joo KM, Park CW, Jeong HJ, Lee SJ, Chang IS (2008) Simultaneous determination of two Amadori compounds in Korean red ginseng (Panax ginseng) extracts and rat plasma by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr B 865(1–2):159–166

    CAS  Google Scholar 

  • Joo KM, Lee JH, Jeon HY, Park CW, Hong DK, Jeong HJ, Lee SJ, Lee SY, Lim KM (2010) Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J Pharm Biomed Anal 51(1):278–283

    CAS  PubMed  Google Scholar 

  • Jovanovski E, Bateman EA, Bhardwaj J, Fairgrieve C, Mucalo I, Jenkins AL, Vuksan V (2014) Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J Am Soc Hypertens 8:537–541 (in press)

    CAS  PubMed  Google Scholar 

  • Jung HL, Kang HY (2013) Effects of Korean red ginseng supplementation on muscle glucose uptake in high-fat fed rats. Chin J Nat Med 11(5):494–499

    CAS  PubMed  Google Scholar 

  • Jung KY, Kim DS, Oh SR, Lee IS, Lee JJ, Park JD, Kim SI, Lee HK (1998) Platelet activating factor antagonist activity of ginsenosides. Biol Pharm Bull (Tokyo) 21(1):79–80

    CAS  Google Scholar 

  • Jung MY, Jeon BS, Bock JY (2002) Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C.A. Meyer). Food Chem 79(1):105–111

    CAS  Google Scholar 

  • Jung CH, Seog HM, Choi IW, Choi HD, Cho HY (2005a) Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol 98(3):245–250

    PubMed  Google Scholar 

  • Jung CH, Seog HM, Choi IW, Cho HY (2005b) Antioxidant activities of cultivated and wild Korean ginseng leaves. Food Chem 92(3):535–540

    CAS  Google Scholar 

  • Jung CH, Seog HM, Choi IW, Park MW, Cho HY (2006) Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT Food Sci Technol 39(3):266–274

    CAS  Google Scholar 

  • Kajiwara H, Hemmings AM, Hirano H (1996) Evidence of metal binding activities of pentadecapeptide from Panax ginseng. J Chromatogr B Biomed Sci Appl 687(2):443–448

    CAS  Google Scholar 

  • Kaku T, Kawashima Y (1980) Isolation and characterization of ginsenoside-Rg2, 20R-prosapogenin, 20S-prosapogenin and delta 20-prosapogenin. Chemical studies on saponins of Panax ginseng C. A. Meyer, Third report. Arzneimittelforschung 30(6):936–943

    CAS  PubMed  Google Scholar 

  • Kaku T, Miyata T, Uruno T, Sako I, Kinoshita A (1975) Chemico-pharmacological studies on saponins of Panax ginseng C. A. Meyer. I. Chemical part. Arzneimittelforschung 25(3):343–347

    CAS  PubMed  Google Scholar 

  • Kang SY, Schini-Kerth VB, Kim ND (1995) Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci 56(19):1577–1586

    CAS  PubMed  Google Scholar 

  • Kang KS, Kim HY, Pyo JS, Yokozawa T (2006a) Increase in the free radical scavenging activity of ginseng by heat-processing. Biol Pharm Bull 29(4):750–754

    CAS  PubMed  Google Scholar 

  • Kang KS, Yokozawa T, Kim HY, Park JH (2006b) Study on the nitric oxide scavenging effects of ginseng and its compounds. J Agric Food Chem 54(7):2558–2562

    CAS  PubMed  Google Scholar 

  • Kang KS, Yamabe N, Kim HY, Yokozawa T (2007) Effect of sun ginseng methanol extract on lipopolysaccharide-induced liver injury in rats. Phytomedicine 14(2):840–845

    CAS  PubMed  Google Scholar 

  • Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T (2008) Therapeutic potential of 20(S)-ginsenoside Rg3 against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol 591(1–3):266–272

    CAS  PubMed  Google Scholar 

  • Kang KS, Tanaka T, Cho EJ, Yokozawa T (2009) Evaluation of the peroxynitrite scavenging activity of heat-processed ginseng. J Med Food 12(1):124–130

    CAS  PubMed  Google Scholar 

  • Kang KS, Kim HY, Yoo HH, Piao XL, Ham JY, Yang HO, Park JH (2012) Protective effect of ginseng sapogenins against 2,2′-azobis (1-aminopropane) dihydrochloride (AAPH)-induced LLC-PK1 cell damage. Bioorg Med Chem Lett 22(1):634–637

    CAS  PubMed  Google Scholar 

  • Kang JH, Lee NH, Ahn YC, Lee H (2013) Study on improving blood flow with korean red ginseng substances using digital infrared thermal imaging and doppler sonography: randomized, double blind, placebo-controlled clinical trial with parallel design. J Tradit Chin Med 33(1):39–45

    CAS  PubMed  Google Scholar 

  • Karadeniz A, Mustafa Cemek M, Nejdet Simsek N (2009a) The effects of Panax ginseng and Spirulina platensis on hepatotoxicity induced by cadmium in rats. Ecotoxicol Environ Saf 72(1):231–235

    CAS  PubMed  Google Scholar 

  • Karadeniz A, Yildirim A, Karakoc A, Kalkan Y, Celebi F (2009b) Protective effect of Panax ginseng on carbon tetrachloride induced liver, heart and kidney injury in rats. Rev Med Vet 160(5):237–243

    Google Scholar 

  • Karakus E, Karadeniz A, Simsek N, Can I, Kara A, Yildirim S, Kalkan Y, Kisa F (2011) Protective effect of Panax ginseng against serum biochemical changes and apoptosis in liver of rats treated with carbon tetrachloride (CCl4). J Hazard Mater 195:208–213

    CAS  PubMed  Google Scholar 

  • Karikura M, Miyase T, Tanizawa H, Takino Y, Taniyama T, Hayashi T (1990) Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V.: the decomposition products of ginsenoside Rb2 in the large intestine of rats. Chem Pharm Bull 38(10):2859–2861

    CAS  PubMed  Google Scholar 

  • Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y (1991a) Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VI. The decomposition products of ginsenoside Rb2 in the stomach of rats. Chem Pharm Bull 39(2):400–404

    CAS  PubMed  Google Scholar 

  • Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y (1991b) Studies on absorption, distribution, excretion and metabolism of ginseng saponins.VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem Pharm Bull 39(9):2357–2361

    CAS  PubMed  Google Scholar 

  • Karikura M, Tanizawa H, Hirata T, Miyase T, Takino Y (1992) Studies on absorption, distribution, excretion and metabolism of ginseng saponins, VIII: isotope labeling of ginsenoside Rb2. Chem Pharm Bull 40(9):2458–2460

    CAS  PubMed  Google Scholar 

  • Karpagam V, Sathishkumar N, Sathiyamoorthy S, Rasappan P, Shila S, Kim YJ, Yang DC (2013) Identification of BACE1 inhibitors from Panax ginseng saponins—an Insilco approach. Comput Biol Med 43(8):1037–1044

    CAS  PubMed  Google Scholar 

  • Kasai R, Besso H, Tanaka O, Saruwatari Y, Fuwa T (1983) Saponins of red ginseng. Chem Pharm Bull 31(6):2120–2125

    CAS  Google Scholar 

  • Kasai R, Hara K, Dokan R, Suzuki N, Mizutare T, Yoshihara S, Yamasaki K (2000) Major metabolites of ginseng sapogenins formed by rat liver microsomes. Chem Pharm Bull 48(8):1226–1227

    CAS  PubMed  Google Scholar 

  • Katano M, Yamamoto H, Matsunaga H, Mori M, Takata K, Nakamura M (1990) Cell growth inhibitory substance isolated from Panax ginseng root: panaxytriol. Gan To Kagaku Ryoho 17(5):1045–1049 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Kawaguchi K, Hirotani M, Yoshikawa T, Furuya T (1990) Biotransformation of digitoxigenin by ginseng hairy root cultures. Phytochemistry 29(3):837–843

    CAS  PubMed  Google Scholar 

  • Kawaguchi K, Watanabe T, Hirotani M, Furuya T (1996) Biotransformation of digitoxigenin by cultured ginseng cells. Phytochemistry 42(3):667–669

    CAS  PubMed  Google Scholar 

  • Kennedy DO, Scholey AB (2003) Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 75(3):687–700

    CAS  PubMed  Google Scholar 

  • Kennedy DO, Scholey AB, Wesnes KA (2001) Dose-dependent changes in cognitive performance and mood following acute administration of ginseng to healthy young volunteers. Nutr Neurosci 4:295–310

    CAS  PubMed  Google Scholar 

  • Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon HJ, Surh YJ (2001) Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 150(1):41–48

    Google Scholar 

  • Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK, Surh YJ (2003) Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-κB activation and tumor promotion. Mutat Res Fundam Mol Mech 523–524:75–85

    Google Scholar 

  • Khalil WK, Ahmed KA, Park MH, Kim YT, Park HH, Abdel-Wahhab MA (2008) The inhibitory effects of garlic and Panax ginseng extract standardized with ginsenoside Rg3 on the genotoxicity, biochemical, and histological changes induced by ethylenediaminetetraacetic acid in male rats. Arch Toxicol 82(3):183–195

    CAS  PubMed  Google Scholar 

  • Kim DH (2012) Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 36(1):1–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YS, Jin SH (2004) Ginsenoside Rh2 induces apoptosis via activation of caspase-1 and -3 and up-regulation of Bax in human neuroblastoma. Arch Pharm Res 27(8):834–839

    CAS  PubMed  Google Scholar 

  • Kim HS, Kim KS (1999) Inhibitory effects of ginseng total saponin on nicotine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity. Behav Brain Res 103(1):55–61

    CAS  PubMed  Google Scholar 

  • Kim K, Kim HY (2008) Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J Ethnopharmacol 120(2):190–195

    CAS  PubMed  Google Scholar 

  • Kim JJ, Kim HS (2009) Panax ginseng C.A. Meyer modulates the levels of MMP3 in S12 murine articular cartilage cell line. J Ethnopharmacol 124(3):397–403

    PubMed  Google Scholar 

  • Kim HY, Kim K (2012) Regulation of signaling molecules associated with insulin action, insulin secretion and pancreatic β-cell mass in the hypoglycemic effects of Korean red ginseng in Goto-Kakizaki rats. J Ethnopharmacol 142(1):53–58

    CAS  PubMed  Google Scholar 

  • Kim TH, Lee SM (2010) The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 48(6):1516–1520

    CAS  PubMed  Google Scholar 

  • Kim SH, Park KS (2003) Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 48(5):511–513

    CAS  PubMed  Google Scholar 

  • Kim DY, Yang WM (2011) Panax ginseng ameliorates airway inflammation in an ovalbumin-sensitized mouse allergic asthma model. J Ethnopharmacol 136(1):230–235

    CAS  PubMed  Google Scholar 

  • Kim C, Choi H, Kim CC, Kim JK, Kim MS, Ahn BT, Park HJ (1976) Influence of ginseng on mating behaviour of male rats. Am J Chin Med 4(2):163–168

    CAS  PubMed  Google Scholar 

  • Kim SK, Sakamoto I, Morimoto K, Sakata M, Yamasaki KK, Tanaka O (1981) Seasonal variation of saponins, sucurose and monosaccharides in cultivated ginseng roots. Planta Med 42(6):181–186

    CAS  PubMed  Google Scholar 

  • Kim SI, Kang KS, Lee YH (1989a) Panaxyne epoxide, a new cytotoxic polyyne from Panax ginseng root against L1210 cells. Arch Pharm Res 12(1):48–51

    CAS  Google Scholar 

  • Kim SI, Lee YH, Kang KS (1989b) 10-Acetyl panaxytriol, a new cytotoxic polyacetylene from Panax ginseng. Yakhak Hoechi 33(2):118–123 (In Korean)

    CAS  Google Scholar 

  • Kim YS, Kang KS, Kim SI (1990) Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: comparison of effects of neutral and acidic polysaccharide fraction. Arch Pharm Res 13(4):330–337

    Google Scholar 

  • Kim HS, Oh KW, Rheu HM, Kim SH (1992) Antagonism of U-50,488H-induced antinociception by ginseng total saponins is dependent on serotonergic mechanisms. Pharmacol Biochem Behav 42(4):587–593

    CAS  PubMed  Google Scholar 

  • Kim SH, Cho CK, Yoo SY, Koh KH, Yun HG, Kim TH (1993) In vivo radioprotective activity of Panax ginseng and diethyldithiocarbamate. In Vivo 7(5):467–470

    CAS  PubMed  Google Scholar 

  • Kim ND, Kang SY, Schini VB (1994) Ginsenosides evoke endothelium-dependent vascular relaxation in rat aorta. Gen Pharmacol Vasc Syst 25(6):1071–1077

    CAS  Google Scholar 

  • Kim DS, Chang YJ, Zedk U, Zhao P, Liu YQ, Yang CR (1995a) Dammarane saponins from Panax ginseng. Phytochemistry 40(5):1493–1497

    CAS  PubMed  Google Scholar 

  • Kim HS, Kang JG, Seong YH, Nam KY, Oh KW (1995b) Blockade by ginseng total saponin of the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacol Biochem Behav 50(1):23–27

    CAS  PubMed  Google Scholar 

  • Kim SI, Park JH, Ryu JH, Park JD, Lee YH, Park JH, Kim TH, Kim JM, Baek NI (1996) Ginsenoside Rg5, a genuine dammarane glycoside from Korean red ginseng. Arch Pharm Res 19(6):551–553

    CAS  Google Scholar 

  • Kim YW, Song DK, Kim WH, Lee KM, Wie MB, Kim YH, Kee SH, Cho MK (1997) Long-term oral administration of ginseng extract decreases serum gamma-globulin and IgG1 isotype in mice. J Ethnopharmacol 58(1):55–58

    CAS  PubMed  Google Scholar 

  • Kim HS, Jang CG, Oh KW, Oh SW, Rheu HM, Rhee GS, Seong YH, Park WK (1998a) Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. J Ethnopharmacol 60(1):33–42

    CAS  PubMed  Google Scholar 

  • Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, Yun YS (1998b) Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med 64(2):110–115

    CAS  PubMed  Google Scholar 

  • Kim YS, Kim DS, Kim SI (1998c) Ginsenoside Rh2 and Rh3 induce differentiation of HL-60 cells into granulocytes: modulation of protein kinase C isoforms during differentiation by ginsenoside Rh2. Int J Biochem Cell Biol 30(3):327–338

    CAS  PubMed  Google Scholar 

  • Kim DC, In MJ, Lee JY, Hwang YK, Lee SD (1999a) Antithrombin active polysaccharide isolated from the alkaline extract of red ginseng. J Ginseng Res 23(4):217–222

    CAS  Google Scholar 

  • Kim HS, Kim KS, Oh KW (1999b) Ginseng total saponin inhibits nicotine-induced hyperactivity and conditioned place preference in mice. J Ethnopharmacol 66(1):83–90

    CAS  PubMed  Google Scholar 

  • Kim ND, Kang SY, Kim MJ, Park JH, Schini-Kerth VB (1999c) The ginsenoside Rg3 evokes endothelium-independent relaxation in rat aortic rings: role of K + channels. Eur J Pharmacol 367(1):51–57

    CAS  PubMed  Google Scholar 

  • Kim ND, Kang SY, Park JH, Schini-Kerth VB (1999d) Ginsenoside Rg3 mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of K + channels. Eur J Pharmacol 367(1):41–49

    CAS  PubMed  Google Scholar 

  • Kim SE, Lee YH, Park JH, Lee SK (1999e) Ginsenoside-Rs4, a new type of ginseng saponin concurrently induces apoptosis and selectively elevates protein levels of p53 and p21WAF1 in human hepatoma SK-HEP-1 cells. Eur J Cancer 35(3):507–511

    CAS  PubMed  Google Scholar 

  • Kim YR, Lee SY, Shin BA, Kim KM (1999f) Panax ginseng blocks morphine-induced thymic apoptosis by lowering plasma corticosterone level. Gen Pharmacol: Vasc Syst 32(6):647–652

    CAS  Google Scholar 

  • Kim YS, Jin SH, Lee YH, Kim SI, Park JD (1999g) Ginsenoside Rh2 induces apoptosis independently of Bcl-2, Bcl-xL, or Bax in C6Bu-1 cells. Arch Pharm Res 22(5):448–453

    CAS  PubMed  Google Scholar 

  • Kim YS, Jin SH, Lee YH, Park JD, Kim SI (2000) Differential expression of protein kinase C subtypes during ginsenoside Rh2-lnduced apoptosis in SK-N-BE(2) and C6Bu-1 cells. Arch Pharm Res 23(5):518–524

    CAS  PubMed  Google Scholar 

  • Kim SH, Son CH, Nah SY, Jo SK, Jang JS, Shin DH (2001) Modification of radiation response in mice by Panax ginseng and diethyldithiocarbamate. In Vivo 15(5):407–411

    CAS  PubMed  Google Scholar 

  • Kim JY, Lee KW, Kim SH, Wee JJ, Kim YS, Lee HJ (2002a) Inhibitory effect of tumor cell proliferation and induction of G2/M cell cycle arrest by panaxytriol. Planta Med 68(2):119–122

    CAS  PubMed  Google Scholar 

  • Kim YK, Guo Q, Packer L (2002b) Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 172(2):149–156

    CAS  PubMed  Google Scholar 

  • Kim DH, Moon YS, Lee TH, Jung JS, Suh HW, Song DK (2003a) The inhibitory effect of ginseng saponins on the stress-induced plasma interleukin-6 level in mice. Neurosci Lett 353(1):13–16

    CAS  PubMed  Google Scholar 

  • Kim ND, Kim EM, Kang KW, Cho MK, Choi SY, Kim SG (2003b) Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase. Br J Pharmacol 140(4):661–670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SW, Kwon HY, Chi DW, Shim JH, Park JD, Lee YH, Pyo SK, Rhee DK (2003c) Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg3. Biochem Pharmacol 65(1):75–82

    CAS  PubMed  Google Scholar 

  • Kim SO, Kim TH, Ahn KS, Park WK, Nah SY, Rhim HW (2004) Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem Biophys Res Commun 323:416–424

    CAS  PubMed  Google Scholar 

  • Kim JH, Kim SO, Yoon IS, Lee JH, Jang BJ, Jeong SM, Lee JH, Lee BH, Han JS, Oh SW, Kim HC, Park TK, Rhim HW, Nah SY (2005a) Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 48(5):743–756

    CAS  PubMed  Google Scholar 

  • Kim SH, Park KS, Chang MJ, Sung JH (2005b) Effects of Panax ginseng extract on exercise-induced oxidative stress. J Sports Med Phys Fitness 45(2):178–182

    CAS  PubMed  Google Scholar 

  • Kim HS, Woo SH, Jo S, Hahn EJ, Youn NY, Hl L (2006) Double-blind, placebo-controlled, multi-center study for therapeutic effects of mountain Panax ginseng C.A. Meyer extract in male with erectile dysfunction: a preliminary report. Korean J Androl 24(2):84–88 (In Korean)

    Google Scholar 

  • Kim HJ, Kim MH, Byon YY, Park JW, Jee Y, Joo HG (2007a) Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J Vet Sci 8(1):39–44

    PubMed Central  PubMed  Google Scholar 

  • Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee SM, Chung JM, Kim SO, Rhim HW, Oh JW, Nah SY (2007b) Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res 1136:190–199

    CAS  PubMed  Google Scholar 

  • Kim SN, Ha YW, Shin HS, Son SH, Wu SJ, Kim YS (2007c) Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed Anal 45(1):164–170

    CAS  PubMed  Google Scholar 

  • Kim MS, Kwon B, Park MS, Ji GE (2008a) Isolation of ginsenoside Rh1 and compound K from fermented ginseng and efficacy assessment on systemic anaphylactic shock. Food Sci Biotechnol 17(4):1–4

    Google Scholar 

  • Kim SO, Kim MK, Lee HS, Park JK, Park K (2008b) The effect of Korean red ginseng extract on the relaxation response in isolated rabbit vaginal tissue and its mechanism. J Sex Med 5(9):2079–2084

    PubMed  Google Scholar 

  • Kim SO, Nah SY, Rhim HW (2008c) Neuroprotective effects of ginseng saponins against L-type Ca2+ channel-mediated cell death in rat cortical neurons. Biochem Biophys Res Commun 365(3):399–405

    CAS  PubMed  Google Scholar 

  • Kim MH, Byon YY, Ko EJ, Song JY, Yun YS, Shin T, Joo HG (2009a) Immunomodulatory activity of ginsan, a polysaccharide of Panax ginseng, on dendritic cells. Korean J Physiol Pharmacol 13(3):169–173

    Google Scholar 

  • Kim SN, Lee JH, Shin H, Son SH, Kim YS (2009b) Effects of in vitro-digested ginsenosides on lipid accumulation in 3T3-L1 adipocytes. Planta Med 75(6):596–601

    CAS  PubMed  Google Scholar 

  • Kim YG, Sumiyoshi M, Sakanaka M, Kimura Y (2009c) Effects of ginseng saponins isolated from red ginseng on ultraviolet B-induced skin aging in hairless mice. Eur J Pharmacol 602(1):148–156

    CAS  PubMed  Google Scholar 

  • Kim NR, Kim JH, Kin CY (2010) Effect of Korean red ginseng supplementation on ocular blood flow in patients with glaucoma. J Ginseng Res 34(3):237–245

    Google Scholar 

  • Kim HS, Kim DH, Kim BK, Yoon SK, Kim MH, Lee JY, Kim HO, Park YM (2011a) Effects of topically applied Korean red ginseng and its genuine constituents on atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol 11(2):280–285

    CAS  PubMed  Google Scholar 

  • Kim JA, Son JH, Yang SY, Kim YH (2011b) Isoconiferoside, a new phenolic glucoside from seeds of Panax ginseng. Molecules 16(8):6577–6581

    CAS  PubMed  Google Scholar 

  • Kim EH, Kim IH, Lee MJ, Nguyen CT, Ha JA, Lee SC, Choi SD, Choi KT, Pyo SK, Rhee DK (2013a) Anti-oxidative stress effect of red ginseng in the brain is mediated by peptidyl arginine deiminase type IV (PADI4) repression via estrogen receptor (ER) β up-regulation. J Ethnopharmacol 148(2):474–485

    CAS  PubMed  Google Scholar 

  • Kim EJ, Jung IH, Le TKV, Jeong JJ, Kim NJ, Kim DH (2013b) Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 146(1):294–299

    CAS  PubMed  Google Scholar 

  • Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, Ahn YC, Son CG (2013c) Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebo-controlled trial. PLoS One 8(4):e61271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HM, Lee HJ, Kim DJ, Kim TM, Moon HS, Choi HM (2013d) Panax ginseng exerts antiproliferative effects on rat hepatocarcinogenesis. Nutr Res 33(9):753–760

    CAS  PubMed  Google Scholar 

  • Kim JA, Son JH, Song SB, Yang SY, Kim YH (2013e) Sterols isolated from seeds of Panax ginseng and their antiinflammatory activities. Pharmacogn Mag 9:182–185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH (2013f) Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur J Pharmacol 702(1–3):285–293

    CAS  PubMed  Google Scholar 

  • Kim JR, Choi JH, Kim JY, Kim HJ, Kang HR, Kim EH, Chang JH, Kim YE, Choi YJ, Lee KW, Lee HJ (2014a) 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol-fortified ginseng extract attenuates the development of atopic dermatitis-like symptoms in NC/Nga mice. J Ethnopharmacol 151(1):365–371

    Google Scholar 

  • Kim JY, Ahn HJ, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS (2014b) Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 158(1–2):143–150

    CAS  PubMed  Google Scholar 

  • Kim MJ, Yun H, Kim DH, Kang I, Choe W, Kim SS, Ha J (2014c) AMP-activated protein kinase determines apoptotic sensitivity of cancer cells to ginsenoside-Rh2. J Ginseng Res 38(1):16–21

    PubMed Central  PubMed  Google Scholar 

  • Kim WJ, Kang H, Choi GJ, Shin HY, Baek CW, Jung YH, Woo YC, Kim JY, Yon JH (2014d) Antihyperalgesic effects of ginseng total saponins in a rat model of incisional pain. J Surg Res 187(1):169–175

    CAS  PubMed  Google Scholar 

  • Kim YK, Kim YB, Kim JK, Kim SU, Park SU (2014e) Molecular cloning and characterization of mevalonic acid (MVA) pathway genes and triterpene accumulation in Panax ginseng. J Korean Soc Appl Biol Chem 57(3):289–295

    Google Scholar 

  • Kitagawa I, Taniyama T, Hayashi T, Yoshikawa M (1983) Malonyl-ginsenosides Rb1, Rb2, Rc and Rd, four new malonylated dammarane-type triterpene oligosaccharides from ginseng radix. Chem Pharm Bull (Tokyo) 31:3353–3356

    CAS  Google Scholar 

  • Kitagawa I, Taniyama T, Shibuya H, Noda T, Yoshikawa M (1987) Chemical studies on crude drug processing. V. On the constituents of ginseng radix rubra (2): comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng root. Yakugaku Zasshi 107(7):495–505 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Kitagawa I, Taniyama T, Yoshikawa M, Ikenshi Y, Nakagawa Y (1989) Chemical studies on crude drug processing. VI. Chemical structures of malonyl-ginsenosides Rb1, Rb2, Rc, and Rd isolated from the root of Panax ginseng C.A. Meyer. Chem Pharm Bull 37(211):2961–2970

    CAS  Google Scholar 

  • Kiyohara H, Hirano M, Wen XG, Matsumoto T, Sun XB, Yamada H (1994) Characterisation of an anti-ulcer pectic polysaccharide from leaves of Panax ginseng C.A. Meyer. Carbohydr Res 263(1):89–101

    CAS  PubMed  Google Scholar 

  • Ko EJ, Joo HG (2010) Stimulatory effects of ginsan on the proliferation and viability of mouse spleen cells. Korean J Physiol Pharmacol 14(3):133–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ko SK, Cho OS, Bae HM, Im BO, Lee OH, Lee BY (2011) Quantitative analysis of ginsenosides composition in flower buds of various ginseng plants. J Korean Soc Appl Biol Chem 54(1):154–157

    CAS  Google Scholar 

  • Kobayashi M, Mahmud T, Umezome T, Wang WQ, Murakami N, Kitagawa I (1997) The absolute stereostructures of the polyacetylenic constituents of Ginseng Radix Rubra. Tetrahedron 53(46):15691–15700

    CAS  Google Scholar 

  • Kohda H, Tanaka O (1975) Enzymatic hydrolysis of ginseng saponins and their related glycosides. Yakugaku Zasshi 95(2):246–249 (In Japanese)

    CAS  Google Scholar 

  • Koizumi H, Sanada S, Ida Y, Shoji J (1982) Studies on the saponins of ginseng. IV. On the structure and enzymatic hydrolysis of ginsenoside-Ra1. Chem Pharm Bull 30(7):2393–2398

    CAS  Google Scholar 

  • Komatsu M, Tomimori T, Makiguchi Y (1969) Studies on the constituents of the herb of Panax ginseng C. A. Meyer. II. On the flavonoid constituents. Yakugaku Zasshi 89(1):122–126 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Kondo H, Amano U (1920) Constituents of Korean ginseng. III. Yakugaku Zasshi 40:1027

    Google Scholar 

  • Kondo H, Tanaka G (1915) Chemical constituents of Korean ginseng. Yakugaku Zasshi 35:749

    Google Scholar 

  • Kondo H, Yamaguchi S (1918) The constituents of Korean ginseng. II. J Pharm Soc Yakugaku Zasshi 38:747

    Google Scholar 

  • Konno C, Murakami M, Oshima Y, Hikino H (1985) Isolation and hypoglycemic activity of panaxans Q, R, S, T AND U, glycans of Panax ginseng roots. J Ethnopharmacol 14(1):69–74

    CAS  PubMed  Google Scholar 

  • Koo MWL (1998) Effects of ginseng on ethanol induced sedation in mice. Life Sci 64(2):153–160

    Google Scholar 

  • Koo HJ, Park SH, Jo JS, Kim BY, Baik MY (2005) Gelatinization and retrogradation of 6-year-old Korean ginseng starches studied by DSC. LWT Food Sci Technol 38(1):59–65

    CAS  Google Scholar 

  • Kotake M (1930) Glucosides I. Glucoside of Panax ginseng. Nippon Kagaku Zasshi 51:357–360

    CAS  Google Scholar 

  • Kuo YH, Ikegami F, Lambein F (2003) Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry 62(7):1087–1091

    CAS  PubMed  Google Scholar 

  • Kurimoto H, Nishijo H, Uwano T, Yamaguchi H, Zhong YM, Kawanishi K, Taketoshi Ono T (2004) Effects of nonsaponin fraction of red ginseng on learning deficits in aged rats. Physiol Behav 82(2–3):345–355

    CAS  PubMed  Google Scholar 

  • Kushiro T, Ohno Y, Shibuya M, Ebizuka Y (1997) In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes. Biol Pharm Bull 20(3):292–294

    CAS  PubMed  Google Scholar 

  • Kwon BM, Nam JY, Lee SH, Jeong TS, Kim YK, Bok SH (1996) Isolation of cholesteryl ester transfer protein inhibitors from Panax ginseng roots. Chem Pharm Bull 44(2):444–445

    CAS  PubMed  Google Scholar 

  • Kwon BM, Ro SH, Kim MK, Nam JY, Jung HJ, Lee IR, Kim YK, Bok SH (1997) Polyacetylene analogs, isolated from hairy roots of Panax ginseng, inhibit Acyl-CoA: cholesterol acyltransferase. Planta Med 63(6):552–553

    CAS  PubMed  Google Scholar 

  • Kwon BM, Kim MK, Baek NI, Kim DS, Park JD, Kim YK, Lee HK, Kim SI (1999) Acyl-CoA: cholesterol acyltransferase inhibitory activity of ginseng sapogenins, produced from the ginseng saponins. Bioorg Med Chem Lett 9(10):1375–1378

    CAS  PubMed  Google Scholar 

  • Langhansova L, Marsik P, Vanek T (2005) Production of saponins from Panax ginseng suspension and adventitious root cultures. Biol Plant 49(3):463–465

    CAS  Google Scholar 

  • Larina L, Cho BG, Ten L, Park H (2001) Isolation of saponin-free fraction from Ginseng (Panax ginseng CA Meyer) and its effects on the function of neutrophils. Korean J Chem Eng 18(6):986–991

    CAS  Google Scholar 

  • Lasarova MB, Mosharrof AH, Petkov VD, Markovska VL, Petkov VV (1987) Effect of piracetam and of standardized ginseng extract on the electroconvulsive shock-induced memory disturbances in “step-down” passive avoidance. Acta Physiol Pharmacol Bulg 13(2):11–17

    CAS  PubMed  Google Scholar 

  • Lee JH, Cho SH (2011) Korean red ginseng extract ameliorates skin lesions in NC/Nga mice: an atopic dermatitis model. J Ethnopharmacol 133(2):810–817

    CAS  PubMed  Google Scholar 

  • Lee JH, Han YM (2006) Ginsenoside Rg1 helps mice resist to disseminated candidiasis by Th1 type differentiation of CD4+ T cell. Int Immunopharmacol 6(9):1424–1430

    CAS  PubMed  Google Scholar 

  • Lee DC, Lee MO, Kim CY, Clifford DH (1981) Effect of ether, ethanol and aqueous extracts of ginseng on cardiovascular function in dogs. Can J Comp Med 45(2):182–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YN, Lee HY, Lee YM, Chung HY, Kim SI, Lee SK, Park BC, Kim KW (1996) In vitro induction of differentiation by ginsenosides in F9 teratocarcinoma cells. Eur J Cancer A 32(8):1420–1428

    Google Scholar 

  • Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS (1997) Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res 17:323–331

    CAS  PubMed  Google Scholar 

  • Lee YN, Lee HY, Lee YM, Chung HY, Kim SI, Lee SK, Park BC, Kim KW (1998) Involvement of glucocorticoid receptor in the induction of differentiation by ginsenosides in F9 teratocarcinoma cells. J Steroid Biochem Mol Biol 67(2):105–111

    CAS  PubMed  Google Scholar 

  • Lee SJ, Sung JH, Lee SJ, Moon CK, Lee BH (1999) Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett 144(1):39–43

    CAS  PubMed  Google Scholar 

  • Lee SC, Moon YS, You KH (2000a) Effects of red ginseng saponins and nootropic drugs on impaired acquisition of ethanol-treated rats in passive avoidance performance. J Ethnopharmacol 69(1):1–8

    CAS  PubMed  Google Scholar 

  • Lee SJ, Ko WG, Kim JH, Sung JH, Lee SJ, Moon CK, Lee BH (2000b) Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem Pharmacol 60(5):677–685

    CAS  PubMed  Google Scholar 

  • Lee HC, Hwang SG, Lee YG, Sohn HO, Lee DW, Hwang SY, Kwak YS, Wee JJ, Joo WH, Cho YK, Moon JY (2002a) In vivo effects of Panax ginseng extracts on the cytochrome P450-dependent monooxygenase system in the liver of 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed guinea pig. Life Sci 71(7):759–769

    CAS  PubMed  Google Scholar 

  • Lee JH, Kim SR, Bae CS, Kim DH, Hong HN, Nah SY (2002b) Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainic acid-induced neurotoxicity in rat hippocampus. Neurosci Lett 325(2):129–133

    CAS  PubMed  Google Scholar 

  • Lee JH, Lee JS, Chung MS, Kim KH (2004a) In vitro anti-adhesive activity of an acidic polysaccharide from Panax ginseng on Porphyromonas gingivalis binding to erythrocytes. Planta Med 70(6):566–568

    CAS  PubMed  Google Scholar 

  • Lee JY, Kim JW, Cho SD, Kim YH, Choi KJ, Joo WH, Cho YK, Moon JY (2004b) Protective effect of ginseng extract against apoptotic cell death induced by 2,2′,5,5′-tetrachlorobiphenyl in neuronal SK-N-MC cells. Life Sci 75(13):1621–1634

    CAS  PubMed  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004c) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    CAS  PubMed  Google Scholar 

  • Lee SW, Kim K, Rho MC, Chung MY, Kim YH, Lee S, Lee HS, Kim YK (2004d) New polyacetylenes, DGAT inhibitors from the roots of Panax ginseng. Planta Med 70(3):197–200

    CAS  PubMed  Google Scholar 

  • Lee SK, Kim JH, Sohn HJ, Yang JW (2005) Changes in aroma characteristics during the preparation of red ginseng estimated by electronic nose, sensory evaluation and gas chromatography/mass spectrometry. Sensors Actuators B Chem 106(1):7–12

    CAS  Google Scholar 

  • Lee EY, Kim SO, Chung KC, Choo MK, Kim DH, Nam GS, Rhim HW (2006a) 20(S)-ginsenoside Rh2, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur J Pharmacol 536(1–2):69–77

    CAS  PubMed  Google Scholar 

  • Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH (2006b) The following pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria. Carbohydr Res 341(9):1154–1163

    CAS  PubMed  Google Scholar 

  • Lee SH, Jung BH, Kim SY, Lee EH, Bong Chul Chung BC (2006c) The antistress effect of ginseng total saponin and ginsenoside Rg3 and Rb1 evaluated by brain polyamine level under immobilization stress. Pharmacol Res 54(1):46–49

    CAS  PubMed  Google Scholar 

  • Lee WK, Kao ST, Liu IM, Cheng JT (2006d) Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clin Exp Pharmacol Physiol 33(1–2):27–32

    CAS  PubMed  Google Scholar 

  • Lee JH, Sul DG, Oh EH, Jung WW, Hwang KW, Hwang TS, Lee KC, Won NH (2007a) Panax ginseng effects on DNA damage, CYP1A1 expression and histopathological changes in testes of rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Food Chem Toxicol 45(11):2237–2244

    CAS  PubMed  Google Scholar 

  • Lee JS, Jung ES, Lee JY, Huh SR, Kim JE, Park MJ, So JW, Ham YG, Jung KS, Chang-Gu Hyun CG, Kim YS, Park DH (2007b) Panax ginseng induces human type I collagen synthesis through activation of Smad signalling. J Ethnopharmacol 109(1):29–34

    CAS  PubMed  Google Scholar 

  • Lee WK, Kao ST, Liu IM, Cheng JT (2007c) Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm Metab Res 39(5):347–354

    CAS  PubMed  Google Scholar 

  • Lee JH, Lee JH, Lee YM, Kim PN, Jeong CS (2008a) Potential analgesic and anti-inflammatory activities of Panax ginseng head butanolic fraction in animals. Food Chem Toxicol 46(12):3749–3752

    CAS  PubMed  Google Scholar 

  • Lee SH, Ahn YM, Ahn SY, Doo HK, Lee BC (2008b) Interaction between warfarin and Panax ginseng in ischemic stroke patients. J Altern Complement Med 14(6):715–721

    PubMed  Google Scholar 

  • Lee HJ, Lee YH, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS, Lee KW, Kim KS, Lim SK, Lee HC (2009a) Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism 58(8):1170–1177

    CAS  PubMed  Google Scholar 

  • Lee JH, Shim JS, Chung MS, Lim ST, Kim KH (2009b) Inhibition of pathogen adhesion to host cells by polysaccharides from Panax ginseng. Biosci Biotechnol Biochem 73(1):209–212

    CAS  PubMed  Google Scholar 

  • Lee KS, Kim GH, Kim HH, Song MR, Kim MR (2009c) Changes in concentrations of ginsenosides and free amino acids in ginseng and ginseng solution during the Jung Kwa process. Food 3(1):58–64

    Google Scholar 

  • Lee SM, Bae KH, Sohn HJ (2009d) Panaxfuraynes A and B, two new tetrahydrofuranic polyacetylene glycosides from Panax ginseng CA Meyer. Tetrahedron Lett 50(4):416–418

    CAS  Google Scholar 

  • Lee SM, Shon HJ, Choi CS, Hung TM, Min BS, Bae KH (2009e) Ginsenosides from heat processed ginseng. Chem Pharm Bull 57(1):92–94

    CAS  PubMed  Google Scholar 

  • Lee JG, Lee YY, Wu B, Kim SY, Lee YJ, Yun-Choi HS, Park JH (2010a) Inhibitory activity of ginsenosides isolated from processed ginseng on platelet aggregation. Pharmazie 65(7):520–522

    CAS  PubMed  Google Scholar 

  • Lee SM, Sun JM, Jeong JH, Kim MK, Wee WR, Park JH, Lee JH (2010b) Analysis of the effective fraction of sun ginseng extract in selenite induced cataract rat model. J Korean Ophthalmol Soc 51(5):733–739

    Google Scholar 

  • Lee OR, Kim YJ, Balusamy SRD, Kim MK, Sathiyamoorthy S, Yang DC (2011) Ginseng γ-thionin is localized to cell wall-bound extracellular spaces and responsive to biotic and abiotic stresses. Physiol Mol Plant Pathol 76(2):82–89

    CAS  Google Scholar 

  • Lee EJ, Song MJ, Kwon HS, Ji GE, Sung MK (2012a) Oral administration of fermented red ginseng suppressed ovalbumin-induced allergic responses in female BALB/c mice. Phytomedicine 19(10):896–903

    CAS  PubMed  Google Scholar 

  • Lee WJ, Park SH, Lee SY, Chung BC, Song MO, Song KI, Ham JY, Kim SN, Kang KS (2012b) Increase in antioxidant effect of ginsenoside Re-alanine mixture by Maillard reaction. Food Chem 135(4):2430–2435

    CAS  PubMed  Google Scholar 

  • Lee BH, Kim HJ, Chung LY, Nah SY (2013a) Ginsenoside Rg3 regulates GABAA receptor channel activity: involvement of interaction with the γ2 subunit. Eur J Pharmacol 705(1–3):119–125

    CAS  PubMed  Google Scholar 

  • Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park HJ (2013b) Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser(157) phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 37(2):176–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HH, Park DM, Yoon MC (2013c) Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice. Food Chem Toxicol 53:402–408

    CAS  PubMed  Google Scholar 

  • Lee LS, Cho CW, Hong HD, Lee YC, Choi UK, Kim YC (2013d) Hypolipidemic and antioxidant properties of phenolic compound-rich extracts from white ginseng (Panax ginseng) in cholesterol-fed rabbits. Molecules 18(10):12548–12560

    CAS  PubMed  Google Scholar 

  • Lee MH, Kim SS, Cho CW, Choi SY, In G, Kim TK (2013e) Quality and characteristics of ginseng seed oil treated using different extraction methods. J Ginseng Res 37(4):468–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SM, Kim SC, Oh JS, Kim JH, Na MK (2013f) 20(R)-Ginsenoside Rf: a new ginsenoside from red ginseng extract. Phytochem Lett 6(4):620–624

    CAS  Google Scholar 

  • Lee YK, Chin YW, Choi YH (2013g) Effects of Korean red ginseng extract on acute renal failure induced by gentamicin and pharmacokinetic changes by metformin in rats. Food Chem Toxicol 59:153–159

    CAS  PubMed  Google Scholar 

  • Lee JH, Lim H, Shehzad O, Kim YS, Kim HP (2014a) Ginsenosides from Korean red ginseng inhibit matrix metalloproteinase-13 expression in articular chondrocytes and prevent cartilage degradation. Eur J Pharmacol 724:145–151

    CAS  PubMed  Google Scholar 

  • Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Youn-Jung Kim YJ (2014b) Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. J Ginseng Res 38(2):89–96

    PubMed Central  PubMed  Google Scholar 

  • Lee YJ, Han JY, Lee CG, Heo K, Park SI, Park YS, Kim KS, Yang KM, Kim TH, Rhee MH, Kim SD (2014c) Korean Red Ginseng saponin fraction modulates radiation effects on lipopolysaccharide-stimulated nitric oxide production in RAW264.7 macrophage cells. J Ginseng Res 38(3):208–214

    PubMed Central  PubMed  Google Scholar 

  • Lewis WH, Zenger VE, Lynch RG (1983) No adaptogen response of mice to ginseng and Eleutherococcus infusions. J Ethnopharmacol 8(2):209–214

    CAS  PubMed  Google Scholar 

  • Li GX, Liu ZQ (2008) The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis. Food Chem Toxicol 46(3):886–892

    CAS  PubMed  Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2002) Biotransformation of umbelliferone by Panax ginseng root cultures. Tetrahedron Lett 43(32):5633–5635

    CAS  Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Biotransformation of paeonol by Panax ginseng root and cell cultures. J Mol Catal B: Enzym 35(4–6):117–121, Tamotsu

    CAS  Google Scholar 

  • Li N, Liu B, Dluzen DE, Jin Y (2007) Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J Ethnopharmacol 111(3):458–463

    CAS  PubMed  Google Scholar 

  • Li NT, Qin M, Jian YY, Rui X, Hao RG (2009) A new panaxadiol from the acid hydrolysate of Panax ginseng. Chin Chem Lett 20(6):687–689

    Google Scholar 

  • Li HY, Zhao Y, Cao Y, Wang WN, Zhao DQ (2010a) Purification and characterization of a superoxide dismutase from Panax ginseng. Biomed Chromatogr 24(11):1203–1207

    CAS  PubMed  Google Scholar 

  • Li QM, Wang XZ, Zhou HY, Wei W, Li XW, Jin YR (2010b) Determination of panasenoside in leaves of Panax ginseng C.A. Meyer by HPLC. J Jilin Univ (Sci Ed) 5:865–867, In Chinese

    Google Scholar 

  • Li L, Liu JF, Yan XD, Qin KF, Shi M, Lin T, Zhu Y, Kang T, Zhao G (2011) Protective effects of ginsenoside Rd against okadaic acid-induced neurotoxicity in vivo and in vitro. J Ethnopharmacol 138(1):135–141

    CAS  PubMed  Google Scholar 

  • Li C, Cai JP, Geng JS, Li YH, Wang ZY, Li R (2012a) Purification, characterization and anticancer activity of a polysaccharide from Panax ginseng. Int J Biol Macromol 51(5):968–973

    CAS  PubMed  Google Scholar 

  • Li HX, Han SY, Ma X, Zhang K, Wang L, Ma ZZ, Tu PF (2012b) The saponin of red ginseng protects the cardiac myocytes against ischemic injury in vitro and in vivo. Phytomedicine 19(6):477–483

    CAS  PubMed  Google Scholar 

  • Li KK, Yang XB, Yang XW, Liu JX, Gong XJ (2012c) New triterpenoids from the stems and leaves of Panax ginseng. Fitoterapia 83(6):1030–1035

    CAS  PubMed  Google Scholar 

  • Li SL, Shen H, Zhu LY, Xu J, Jia XB, Zhang HM, Lin G, Cai H, Cai BC, Chen SL, Xu HX (2012d) Ultra-high-performance liquid chromatography–quadrupole/time of flight mass spectrometry based chemical profiling approach to rapidly reveal chemical transformation of sulfur-fumigated medicinal herbs, a case study on white ginseng. J Chromatogr A 1231:31–45

    CAS  PubMed  Google Scholar 

  • Li W, Zhang M, Meng ZJ, Zhao LC, Zheng YN, Chen L, Yang GL (2012e) Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia 83(1):192–198

    CAS  PubMed  Google Scholar 

  • Li C, Tian ZN, Cai JP, Chen KX, Zhang B, Feng MY, Shi QT, Li R, Qin Y, Geng JS (2014) Panax ginseng polysaccharide induces apoptosis by targeting Twist/AKR1C2/NF-1 pathway in human gastric cancer. Carbohydr Polym 102:103–109

    CAS  PubMed  Google Scholar 

  • Liang YL, Zhao SJ, Zhang X (2009) Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in Panax ginseng hairy roots. Plant Mol Biol Report 27(3):298–304

    CAS  Google Scholar 

  • Liao BS, Newmark H, Zhou RP (2002) Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol 173(2):224–234

    CAS  PubMed  Google Scholar 

  • Liao WI, Lin YY, Chu SJ, Hsu CW, Tsai SH (2010) Bradyarrhythmia caused by ginseng in a patient with chronic kidney disease. Am J Emerg Med 28(4):538.e5–538.e6

    Google Scholar 

  • Liberti LE, Der Marderosian A (1978) Evaluation of commercial ginseng products. J Pharm Sci 67(10):1487–1489

    CAS  PubMed  Google Scholar 

  • Lim DS, Bae KG, Jung IS, Kim CH, Yun YS, Song JY (2002) Anti-septicaemic effect of polysaccharide from Panax ginseng by macrophage activation. J Infect 45(1):32–38

    CAS  PubMed  Google Scholar 

  • Lim S, Yoon JW, Choi SH, Cho BJ, Kim JT, Chang HS, Park HS, Park KS, Lee HK, Kim YB, Jang HC (2009) Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism 58(1):8–15

    CAS  PubMed  Google Scholar 

  • Lin YT (1961) The constituents of Panax ginseng C.A. Meyer. J Chin Chem Soc (Taiwan) II 8(1–2):109–113

    Google Scholar 

  • Lin KMC, Hsu CH, Rajasekaran S (2008) Angiogenic evaluation of ginsenoside Rg1 from Panax ginseng in fluorescent transgenic mice. Vasc Pharmacol 49(1):37–43

    CAS  Google Scholar 

  • Lin T, Liu YF, Shi M, Liu XD, Li L, Liu Y, Zhao G (2012) Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J Ethnopharmacol 142(3):754–761

    CAS  PubMed  Google Scholar 

  • Liu M, Zhang JT (1996) Studies on the mechanisms of immunoregulatory effects of ginsenoside Rg1 in aged rats. Yao Xue Xue Bao 31(2):95–100 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Liu JD, Wang S, Liu HT, Yang LP, Nan GZ (1995) Stimulatory effect of saponin from Panax ginseng on immune function of lymphocytes in the elderly. Mech Ageing Dev 83(1):43–53

    CAS  PubMed  Google Scholar 

  • Liu WK, Xu SX, Che CT (2000) Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci 67(11):1297–1306

    CAS  PubMed  Google Scholar 

  • Liu ZQ, Luo XY, Sun YX, Chen YP, Wang ZC (2002) Can ginsenosides protect human erythrocytes against free-radical-induced hemolysis? Biochim Biophys Acta 1572(1):58–66

    CAS  PubMed  Google Scholar 

  • Liu JW, Wei DZ, Du CB, Zhong JJ (2003) Enhancement of fibrinolytic activity of bovine aortic endothelial cells by ginsenoside Rb2. Acta Pharmacol Sin 24(2):102–108

    PubMed  Google Scholar 

  • Liu TP, Liu IM, Cheng JT (2005) Improvement of insulin resistance by Panax ginseng in fructose-rich chow-fed rats. Horm Metab Res 37(3):146–151

    CAS  PubMed  Google Scholar 

  • Liu Z, Wang LJ, Li X, Hu JN, Chen Y, Ruan CC, Sun GZ (2009) Hypoglycemic effects of malonyl-ginsenosides extracted from roots of Panax ginseng on streptozotocin-induced diabetic mice. Phytother Res 23(10):1426–1430

    CAS  PubMed  Google Scholar 

  • Liu GY, Li XW, Wang NB, Zhou HY, Wei W, Gui MY, Yang B, Jin YR (2010a) Three new dammarane-type triterpene saponins from the leaves of Panax ginseng C.A. Meyer. J Asian Nat Prod Res 12(10):865–873

    CAS  PubMed  Google Scholar 

  • Liu L, Zhu XM, Wang QJ, Zhang DL, Fang ZM, Wang CY, Wang Z, Sun BS, Wu H, Sung CK (2010b) Enzymatic preparation of 20(S, R)-protopanaxadiol by transformation of 20(S, R)-Rg3 from black ginseng. Phytochemistry 17(3):1514–1520

    Google Scholar 

  • Liu Z, Li W, Li X, Zhang M, Chen L, Zheng YN, Sun CZ, Ruan CC (2013) Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. J Ethnopharmacol 145(1):233–240

    CAS  PubMed  Google Scholar 

  • López MVN, Cuadrado MPG-S, Ruiz-Poveda OMP, Del Fresno AMV, Accame MEC (2007) Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta 1770(9):1308–1316

    PubMed  Google Scholar 

  • Lu HC (2005) Chinese natural cures. Black Dog & Leventhal Publishers, New York, p 512

    Google Scholar 

  • Lu ZQ, Dice JF (1985) Ginseng extract inhibits protein degradation and stimulates protein synthesis in human fibroblasts. Biochem Biophys Res Commun 126(1):636–640

    CAS  PubMed  Google Scholar 

  • Lu MB, Wong HL, Teng WL (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20(7):674–677

    CAS  Google Scholar 

  • Lu D, Liu JP, Zhao WJ, Li PY (2012) Chronic toxicity of ginsenoside Re on Sprague-Dawley rats. J Ethnopharmacol 144(3):656–663

    CAS  PubMed  Google Scholar 

  • Luo DH, Fang BS (2008) Structural identification of ginseng polysaccharides and testing of their antioxidant activities. Carbohydr Polym 72(3):376–381

    CAS  Google Scholar 

  • Luo HM, Jiang RZ, Yang XH, Chen YH, Hong T, Wang Y (2013) Purification and characterization of a novel tetradecapeptide from ginseng polypeptides with enhancing memory activity for mice. Chem Res Chin Univ 29(4):638–641

    CAS  Google Scholar 

  • Malinovskaya GV, Makhan’kov VV, Denisenko VA, Uvarova NI (1991) A study of the chemical composition of commercial roots of Panax ginseng. Chem Nat Compd 27(2):253–254

    Google Scholar 

  • Matsuda H, Kubo M (1983) Pharmacological study on Panax ginseng C.A. Meyer. I. Effects of red ginseng on the experimental disseminated intravascular coagulation. Yakugaku Zasshi 103(12):1269–1277 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Matsuda H, Kubo M (1984) Pharmacological study on Panax ginseng C.A. Meyer. II. Effects of red ginseng on the experimental gastric ulcer (1.). Yakugaku Zasshi 104(5):449–453 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Matsuda H, Hasegawa T, Kubo M (1985) Pharmacological Study on Panax ginseng C. A. Meyer. VII. Protective effect of red ginseng on infection (1) on phagocytic activity of mouse reticuloendotherial system. Yakugaku Zasshi 105(10):948–954 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Matsuda H, Namba K, Fukuda S, Tani T, Kubo M (1986a) Pharmacological study on Panax ginseng C. A. Meyer. III. Effects of red ginseng on experimental disseminated intravascular coagulation. (2). Effects of ginsenosides on blood coagulative and fibrinolytic systems. Chem Pharm Bull (Tokyo) 34(3):1153–1157

    CAS  Google Scholar 

  • Matsuda H, Namba K, Fukuda S, Tani T, Kubo M (1986b) Pharmacological study on Panax ginseng C. A. Meyer. IV. Effects of red ginseng on experimental disseminated intravascular coagulation. (3). Effect of ginsenoside-Ro on the blood coagulative and fibrinolytic system. Chem Pharm Bull (Tokyo) 34(5):2100–2104

    CAS  Google Scholar 

  • Matsunaga H, Katano M, Yamamoto H, Mori M, Takata K (1989a) Studies on the panaxytriol of Panax ginseng C. A. Meyer. Isolation, determination and antitumor activity. Chem Pharm Bull (Tokyo) 37(5):1279–1281

    CAS  Google Scholar 

  • Matsunaga H, Katano M, Yamamoto H, Mori M, Takata K, Nishi M (1989b) Determination of panaxytriol, a new type of tumour growth inhibitor from Panax ginseng, by capillary gas chromatography. J Chromatogr 481:368–372

    CAS  PubMed  Google Scholar 

  • Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K (1990) Cytotoxic activity of polyacetylenic compounds in Panxa ginseng C.A. Meyer. Chem Pharm Bull (Tokyo) 38(12):3480–3482

    CAS  Google Scholar 

  • Matsunaga H, Tong CN, Kubo M (1992) Pharmacological study on Panax ginseng C.A. Meyer. XIV. Effect of 70% methanolic extract from red ginseng on the cytocidal effect of mitomycin c against rat ascites hepatoma AH 130. Yakugaku Zasshi 112(11):849–855 (In Japanese)

    Google Scholar 

  • Matsuura H, Yoshida S, Hirao Y, Kunihiro K, Fuwa T, Kasai R, Tanaka O (1984a) Study of red ginseng: new glucosides and a note on the occurrence of maltol. Chem Pharm Bull 32(11):4674–4677

    CAS  Google Scholar 

  • Matsuura H, Kasai R, Tanaka O, Saruwatari Y, Kunihiro K, Fuwa T (1984b) Further studies on dammarane-saponins of ginseng roots. Chem Pharm Bull 32(3):1188–1192

    CAS  Google Scholar 

  • Matsuura Y, Zheng YN, Takaku T, Kameda K, Okuda H (1994) Isolation and physiological activities of a new amino acid derivative from Korean red ginseng. Korean J Ginseng Res 18(3):204–211

    CAS  Google Scholar 

  • Min JK, Kim JH, Cho YL, Maeng YS, Lee SJ, Pyun BJ, Kim YM, Park JH, Kwon YG (2006) 20(S)-Ginsenoside Rg3 prevents endothelial cell apoptosis via inhibition of a mitochondrial caspase pathway. Biochem Biophys Res Commun 349(3):987–994

    CAS  PubMed  Google Scholar 

  • Ming YL, Song G, Chen LH, Zheng ZZ, Chen ZY, Ouyang GL, Tong QX (2007) Anti-proliferation and apoptosis induced by a novel intestinal metabolite of ginseng saponin in human hepatocellular carcinoma cells. Cell Biol Int 31(10):1265–1273

    CAS  PubMed  Google Scholar 

  • Mizumaki Y, Kurimoto M, Hirashima Y, Nishijima M, Kamiyama H, Nagai S, Akira Takaku A, Sugihara K, Shimizu M, Endo S (2002) Lipophilic fraction of Panax ginseng induces neuronal differentiation of PC12 cells and promotes neuronal survival of rat cortical neurons by protein kinase C dependent manner. Brain Res 950(1–2):254–260

    CAS  PubMed  Google Scholar 

  • Mizuno M, Yamada J, Terai H, Kozukue N, Lee YS, Tsuchida H (1994) Differences in immunomodulating effects between wild and cultured Panax ginseng. Biochem Biophys Res Commun 200(3):1672–1678

    CAS  PubMed  Google Scholar 

  • Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S, Samukawa K, Azuma I (1995) Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 18(9):1197–1202

    CAS  PubMed  Google Scholar 

  • Mogil JS, Shin YH, McCleskey EW, Kim SC, Nah SY (1998) Ginsenoside Rf, a trace component of ginseng root, produces antinociception in mice. Brain Res 792(2):218–228

    CAS  PubMed  Google Scholar 

  • Moon JG, Yu SJ, Kim HS, Sohn JW (2000) Induction of G1 cell cycle arrest and p27KIP1 increase by panaxydol isolated from Panax ginseng. Biochem Pharmacol 59(9):1109–1116

    CAS  PubMed  Google Scholar 

  • Morgan A, Cupp MJ (2000) Panax ginseng. In: Cupp MJ (ed) Toxicology and clinical pharmacology of herbal products. Humana Press, Totowa, pp 141–153

    Google Scholar 

  • Na HS, Lim YJ, Yun YS, Kweon MN, Lee HC (2010) Ginsan enhances humoral antibody response to orally delivered antigen. Immune Netw 10(1):5–14

    PubMed Central  PubMed  Google Scholar 

  • Nabata H, Saito H, Takagi K (1973) Pharmacological studies of neutral saponins (GNS) of Panax ginseng root. Jpn J Pharmacol 23(1):29–41

    CAS  PubMed  Google Scholar 

  • Nagasawa T, Oura H, Hiai S, Nishinaga K (1977) Effect of ginseng extract on ribonucleic acid and protein synthesis in rat kidney. Chem Pharm Bull 25(7):1665–1670

    CAS  PubMed  Google Scholar 

  • Nah SY (2012) Gintonin: a novel ginseng-derived ligand that targets G protein- coupled lysophosphatidic acid receptors. Curr Drug Targets 13(13):1659–1664

    CAS  PubMed  Google Scholar 

  • Nah JJ, Hahn JH, Chung S, Choi S, Kim YI, Nah SY (2000) Effect of ginsenosides, active components of ginseng, on capsaicin-induced pain-related behaviour. Neuropharmacology 39(11):2180–2184

    CAS  PubMed  Google Scholar 

  • Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M (2007) Structures of dammarane-type triterpene triglycosides from the flower buds of Panax ginseng. Heterocycles 71(3):577–588

    CAS  Google Scholar 

  • Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, Kudoh K, Nagata I, Shinomiya N (1998) Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn Cancer Res 89(7):733–740

    CAS  Google Scholar 

  • Namba T, Yoshizaki M, Tominori T, Kobashi K, Mitsui K (1973) Hemolytic and its protective activity of ginseng saponins. Chem Pharm Bull (Tokyo) 21(2):459–461

    CAS  Google Scholar 

  • Natural Products Research Institute (NPRI) (1998) Medicinal plants in the Republic of Korea. WHO Regional Publications, Western Pacific Series, 316 pp

    Google Scholar 

  • Naval MV, Gómez-Serranillos MP, Carretero ME, Villar AM (2007) Neuroprotective effect of a ginseng (Panax ginseng) root extract on astrocytes primary culture. J Ethnopharmacol 112(2):262–270

    CAS  PubMed  Google Scholar 

  • Nemmani KVS, Ramarao P (2002) Ginseng total saponin potentiates acute U-50,488H-induced analgesia and inhibits tolerance to U-50,488H-induced analgesia in mice. Pharmacol Biochem Behav 72(1–2):1–6

    CAS  PubMed  Google Scholar 

  • Ng TB, Wang HX (2001) Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci 68(7):739–749

    CAS  PubMed  Google Scholar 

  • Ng TB, Yeung HW (1985) Hypoglycemic constituents of Panax ginseng. Gen Pharmacol: Vasc Syst 16(6):549–552

    CAS  Google Scholar 

  • Ni N, Liu Q, Ren HX, Wu D, Luo CM, Li P, Wan JB, Su HX (2014) Ginsenoside Rb1 protects rat neural progenitor cells against oxidative injury. Molecules 19(3):3012–3024

    PubMed  Google Scholar 

  • Nie BM, Jiang XY, Cai JX, Fu SL, Yang LM, Lin L, Hang Q, Lu PL, Lu Y (2008) Panaxydol and panaxynol protect cultured cortical neurons against Abeta25–35-induced toxicity. Neuropharmacology 54(5):845–853

    CAS  PubMed  Google Scholar 

  • Nikaido T, Ohmoto T, Sankawa U, Tanaka O, Kasai R, Shoji J, Sanada S, Hiai S, Yokoyama H, Oura H, Kawashima Y (1983) Inhibitors of cyclic AMP phosphodiesterase in Panax ginseng C. A. Meyer and Panax japonicus C. A. Meyer. Chem Pharm Bull 32(4):1477–1483

    Google Scholar 

  • Nishio M, Zushi S, Ishii T, Furuya T, Syono K (1976) Mass fragmentographic determination of indole-3-acetic acid in callus tissues of Panax ginseng and Nicotiana tabacum. Chem Pharm Bull 24(9):2038–2042

    CAS  Google Scholar 

  • Niu J, Pi ZF, Yue H, Wang Y, Yu Q, Liu SY (2012) Effect of ginseng polysaccharide on the urinary excretion of type 2 diabetic rats studied by liquid chromatography–mass spectrometry. J Chromatogr B 907:7–12

    CAS  Google Scholar 

  • Nocerino E, Amato M, Izzo AA (2000) The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 71(Sup 1):S1–S5

    CAS  PubMed  Google Scholar 

  • Norajit K, Kim KM, Ryu GH (2010) Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J Food Eng 98(3):377–384

    CAS  Google Scholar 

  • Norelli LJ, Xu C (2014) Manic psychosis associated with ginseng: a report of two cases and discussion of the literature. J Diet Suppl (in press)

    Google Scholar 

  • Odani T, Tanizawa H, Takino Y (1983a) Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II: the absorption, distribution and excretion of ginsenoside Rg1 in the rat. Chem Pharm Bull 31(1):292–298

    CAS  PubMed  Google Scholar 

  • Odani T, Tanizawa H, Takino Y (1983b) Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside Rb1 in the rat. Chem Pharm Bull 31(3):1059–1066

    CAS  PubMed  Google Scholar 

  • Oh SH, Lee BH (2004) A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage. Toxicol Appl Pharmacol 194(3):221–229

    CAS  PubMed  Google Scholar 

  • Oh GS, Pae HO, Choi BM, Seo EA, Kim DH, Shin MK, Kim JD, Kim JB, Chung HT (2004a) 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-κB in RAW 264.7 macrophages stimulated with lipopolysaccharide. Cancer Lett 205(1):23–29

    CAS  PubMed  Google Scholar 

  • Oh JH, Lee HS, Rho MC, Kim YK, Lee HK, Lee WS, Kim JN, Lee SK, Jung SH (2004b) Total synthesis and absolute stereochemistry of (9R,10S)-epoxyheptadecan-4,6-diyn-3-one, a diacylglycerol acyltransferase inhibitor from Panax ginseng. Tetrahedron Lett 45(38):7077–7079

    CAS  Google Scholar 

  • Oshima Y, Konno C, Hikino H (1985) Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of Panax ginseng roots. J Ethnopharmacol 14(2–3):255–259

    CAS  PubMed  Google Scholar 

  • Ota T, Fujikawa-yamamoto K, Zong ZP, Yamazaki M, Odashima S, Kitagawa I, Abe H, Arichi S (1987) Plant-glycoside modulation of cell surface related to control of differentiation in cultured B16 melanoma cells. Cancer Res 47(14):3863–3867

    CAS  PubMed  Google Scholar 

  • Ota T, Maeda M, Odashima S (1991) Mechanism of action of ginsenoside Rh2: uptake and metabolism of ginsenoside Rh2 by cultured B16 melanoma cells. J Pharm Sci 80(12):1141–1146

    CAS  PubMed  Google Scholar 

  • Otsuka H, Komiya T, Fujioka S, Goto M, Hiramatsu Y, Fujimura H (1981) Studies on anti-inflammatory agents. IV. Anti-inflammatory constituents from roots of Panax ginseng C.A.Meyer. Yakugaku Zasshi 101(12):1113–1117

    CAS  PubMed  Google Scholar 

  • Oura H, Hiai S, Nakashima S, Tsukada K (1971) Stimulating effect of the roots of Panax ginseng C. A. Meyer on the incorporation of labeled precursors into rat liver RNA. Chem Pharm Bull 19(3):453–459

    CAS  PubMed  Google Scholar 

  • Oura H, Nakshima S, Tuskuda K, Ohta Y (1972a) Effect of radix ginseng extract on serum protein synthesis. Chem Pharm Bull (Tokyo) 20(5):980–986

    CAS  Google Scholar 

  • Oura H, Tsukada K, Nakagawa H (1972b) Effect of radix ginseng extract on cytoplasmic polysome in rat liver. Chem Pharm Bull 20(2):219–225

    CAS  PubMed  Google Scholar 

  • Oura H, Hiai S, Odaka Y, Yokozawa T (1975) Studies on the biochemical action of ginseng saponin. I. Purification from ginseng extract of the active component stimulating serum protein biosynthesis. J Biochem 77(5):1057–1065

    CAS  PubMed  Google Scholar 

  • Pak SK, Lim SC, Nah SY, Lee J, Hill JA, Bae CS (2005) Role of Korean red ginseng total saponins in rat infertility induced by polycystic ovaries. Fertil Steril 84(2):1139–1143

    CAS  PubMed  Google Scholar 

  • Pannacci M, Lucini V, Colleoni F, Martucci C, Grosso S, Sacerdote P, Scaglione F (2006) Panax ginseng C.A. Mayer G115 modulates pro-inflammatory cytokine production in mice throughout the increase of macrophage toll-like receptor 4 expression during physical stress. Brain Behav Immun 20(6):546–551

    CAS  PubMed  Google Scholar 

  • Panwar M, Kumar M, Samarth R, Kumar A (2005a) Evaluation of chemopreventive action and antimutagenic effect of the standardized Panax ginseng extract, EFLA400, in Swiss albino mice. Phytother Res 19(1):65–71

    CAS  PubMed  Google Scholar 

  • Panwar M, Samarth R, Kumar M, Yoon WJ, Kumar A (2005b) Inhibition of benzo(a)pyrene induced lung adenoma by Panax ginseng extract, EFLA400, in Swiss albino mice. Biol Pharm Bull 28(11):2063–2067

    CAS  PubMed  Google Scholar 

  • Park JD, Kim MW, Yoo SJ, Wee JJ (1987) Chemical studies on the ether-soluble alkaloidal fraction of Panax ginseng. Isolation of 1-carbobutoxy-β-carboline and 1-carbomethoxy-β-carboline. Arch Pharm Res 10(3):197–199

    Google Scholar 

  • Park JD, Kim MW, Yoo SJ, Wee JJ (1988) A thiazole and two β-carboline constituents from Panax ginseng. Arch Pharm Res 11(1):52–55

    CAS  Google Scholar 

  • Park MK, Park JH, Kim KH, Han SB, Han BH (1994) Analysis of aromatic acids in Panax ginseng by gas chromatography. Yakhak Hoeji 38:389–393

    CAS  Google Scholar 

  • Park HJ, Rhee MH, Park KM, Nam KY, Park KH (1995) Effect of non-saponin fraction from Panax ginseng on cGMP and thromboxane A2 in human platelet aggregation. J Ethnopharmacol 49(3):157–162

    CAS  PubMed  Google Scholar 

  • Park HJ, Lee JH, Song YB, Park KH (1996) Effects of dietary supplementation of lipophilic fraction from Panax ginseng on cGMP and cAMP in rat platelets and on blood coagulation. Biol Pharm Bull 19(11):1434–1439

    CAS  PubMed  Google Scholar 

  • Park JA, Lee KY, Oh YJ, Kim KW, Lee SK (1997) Activation of caspase-3 protease via a Bcl-2-insensitive pathway during the process of ginsenoside Rh2-induced apoptosis. Cancer Lett 121(1):73–81

    CAS  PubMed  Google Scholar 

  • Park JD, Lee YH, Kim SI (1998a) Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng). Arch Pharm Res 21(5):615–617

    CAS  PubMed  Google Scholar 

  • Park MT, Cha HJ, Jeong JW, Lee HY, Kim SI, Baek NI, Kim OH, Kim KW (1998b) Anti-invasive activity of ginsenoside Rh1 and Rh2 in the HT 1080 cells. J Ginseng Res 22:216–221

    CAS  Google Scholar 

  • Park KM, Kim YS, Jeong TC, Joe CO, Shin HJ, Lee YH, Nam KY, Park JD (2001) Nitric oxide is involved in the immunomodulating activities of acidic polysaccharide from Panax ginseng. Planta Med 67(2):122–126

    CAS  PubMed  Google Scholar 

  • Park IH, Han SB, Kim JM, Piao L, Kwon SW, Kim NY, Kan TK, Park MK, Park JH (2002a) Four new acetylated ginsenosides from processed ginseng (sun ginseng). Arch Pharm Res 25(6):837–841

    CAS  PubMed  Google Scholar 

  • Park IH, Piao LZ, Kwon SW, Lee YJ, Cho SY, Park MK, Park JH (2002b) Cytotoxic dammarane glycosides from processed ginseng. Chem Pharm Bull 50(4):538–540

    CAS  PubMed  Google Scholar 

  • Park EK, Choo MK, Kim EJ, Han MJ, Kim DH (2003) Antiallergic activity of ginsenoside Rh2. Biol Pharm Bull 26(11):1581–1584

    CAS  PubMed  Google Scholar 

  • Park EK, Choo MK, Han MJ, Kim DH (2004a) Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol 133(2):113–120

    CAS  PubMed  Google Scholar 

  • Park EK, Choo MK, Oh JK, Ryu JH, Kim DH (2004b) Ginsenoside Rh2 reduces ischemic brain injury in rats. Biol Pharm Bull 27(3):433–436

    CAS  PubMed  Google Scholar 

  • Park JD, Rhee DK, Lee YH (2005a) Biological activities and chemistry of saponins from Panax ginseng CA Meyer. Phytochem Rev 4(2–3):159–175

    CAS  Google Scholar 

  • Park JH, Cha HY, Seo JJ, Hong JT, Han K, Oh KW (2005b) Anxiolytic-like effects of ginseng in the elevated plus-maze model: comparison of red ginseng and sun ginseng. Prog Neuropsychopharmacol Biol Psychiatry 29(6):895–900

    PubMed  Google Scholar 

  • Park WH, Chang MS, Yang WM, Bae HS, Kim NI, Park SK (2007a) Cytoprotective effect of Panax ginseng on gallic acid-induced toxicity in TM3 mouse Leydig cells. Fitoterapia 78(7–8):577–579

    CAS  PubMed  Google Scholar 

  • Park WS, Shin DY, Kim DR, Yang WM, Chang MS, Park SK (2007b) Korean ginseng induces spermatogenesis in rats through the activation of cAMP-responsive element modulator (CREM). Fertil Steril 88(4):1000–1002

    PubMed  Google Scholar 

  • Park JS, Park EM, Kim DH, Jung KS, Jung JS, Lee EJ, Hyun JW, Kang JL, Kim HS (2009a) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J Neuroimmunol 209(1–2):40–49

    CAS  PubMed  Google Scholar 

  • Park SE, Park C, Kim SH, Hossain MA, Kim MY, Chung HY, Son WS, Kim GY, Choi YH, Kim ND (2009b) Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells. J Ethnopharmacol 21(2):304–312

    Google Scholar 

  • Park EJ, Hwang IS, Song JY, Jee YH (2011a) Acidic polysaccharide of Panax ginseng as a defense against small intestinal damage by whole-body gamma irradiation of mice. Acta Histochem 113(1):19–23

    CAS  PubMed  Google Scholar 

  • Park SJ, Shin WS, Ho JY (2011b) Fructus Panax ginseng extract promotes hair regeneration in C57BL/6 mice. J Ethnopharmacol 138(2):340–344

    CAS  PubMed  Google Scholar 

  • Park HM, Kim SJ, Mun AR, Go HK, Kim GB, Kim SZ, Jang SI, Lee SJ, Kim JS, Kang HS (2012) Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. J Ethnopharmacol 141(3):1071–1076

    CAS  PubMed  Google Scholar 

  • Park HW, In G, Han ST, Lee MW, Kim SY, Kim KT, Cho BY, Han GH, Chang IM (2013a) Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography. J Ginseng Res 37(4):457–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park KS, Hwang DS, Lee JM, Jang JB, Lee KS, Lee CH (2013b) Inhibitory effect of Panax ginseng CA Meyer on gynecological cancer. Orient Pharm Exp Med 13(3):217–223

    Google Scholar 

  • Park SY, Lee JG, Cho HS, Seong ES, Kim HY, Yu CY, Kim JK (2013c) Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (Panax ginseng C. A. Meyer). Plant Omics J 6(3):224–230

    Google Scholar 

  • Park EH, Yum J, Ku KB, Kim HM, Kang YM, Kim JC, Kim IA, Kang YK, Seo SH (2014) Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J Ginseng Res 38(1):40–46

    PubMed Central  PubMed  Google Scholar 

  • Paul S, Heung Sop Shin HS, Sun Chul Kang SC (2012) Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem Toxicol 50(5):1354–1361

    CAS  PubMed  Google Scholar 

  • Persson IAL, Linda Dong L, Karin Persson K (2006) Effect of Panax ginseng extract (G115) on angiotensin-converting enzyme (ACE) activity and nitric oxide (NO) production. J Ethnopharmacol 105(3):321–325

    PubMed  Google Scholar 

  • Petkov VD, Mosharrof AH (1987) Effects of standardized ginseng extract on learning, memory and physical capabilities. Am J Chin Med 15(1–2):19–29

    CAS  PubMed  Google Scholar 

  • Petkov VD, Kehayov R, Belcheva S, Konstantinova E, Petkov VV, Getova D, Markovska V (1993) Memory effects of standardized extracts of Panax ginseng (G115), Ginkgo biloba (GK 501) and their combination Gincosan (PHL-00701). Planta Med 59(2):106–114

    CAS  PubMed  Google Scholar 

  • Pieralisi G, Ripari P, Vecchiet L (1991) Effects of a standardized ginseng extract combined with dimethylaminoethanol bitartrate, vitamins, minerals, and trace elements on physical performance during exercise. Clin Ther 13(3):373–382

    CAS  PubMed  Google Scholar 

  • Poindexter BJ, Allison AW, Bick RJ, Dasgupta A (2006) Ginseng: cardiotonic in adult rat cardiomyocytes, cardiotoxic in neonatal rat cardiomyocytes. Life Sci 79(25):2337–2344

    CAS  PubMed  Google Scholar 

  • Poplawski J, Wrobel JT, Glinka T (1980) Panaxydol, a new polyacetylenic epoxide from Panax ginseng roots. Phytochemistry 19(7):1539–1541

    CAS  Google Scholar 

  • Popov IM, Goldwag WJ (1973) A review of the properties and clinical effects of ginseng. Am J Chin Med 1(2):263–270

    CAS  PubMed  Google Scholar 

  • Popovich DG, Kitts DD (2004) Ginsenosides 20(S)-protopanaxadiol and Rh2 reduce cell proliferation and increase sub-G1 cells in two cultured intestinal cell lines, Int-407 and Caco-2. Can J Physiol Pharmacol 82(3):183–190

    CAS  PubMed  Google Scholar 

  • Popovich DG, Yeo CR, Zhang W (2012) Ginsenosides derived from Asian (Panax ginseng), American ginseng (Panax quinquefolius) and potential cytoactivity. Int J Biomed Pharm Sci 6(1):56–62

    Google Scholar 

  • Punnonen R, Lukola A (1980) Oestrogen-like effect of ginseng. Br Med J 281:1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pyo MK, Choi SH, Hwang SH, Shin TJ, Lee BH, Lee SM, Lim YH, Kim DH, Nah SY (2011) Novel glycolipoproteins from ginseng. J Ginseng Res 35(1):92–103

    CAS  Google Scholar 

  • Qian ZM, Lu J, Gao QP, Li SP (2009) Rapid method for simultaneous determination of flavonoid, saponins and polyacetylenes in folium ginseng and radix ginseng by pressurized liquid extraction and high-performance liquid chromatography coupled with diode array detection and mass spectrometry. J Chromatogr A 1216(18):3825–3830

    CAS  PubMed  Google Scholar 

  • Qiao CX, Den R, Kudo K, Yamada K, Takemoto K, Wati H, Kanba S (2005) Ginseng enhances contextual fear conditioning and neurogenesis in rats. Neurosci Res 51(1):31–38

    CAS  PubMed  Google Scholar 

  • Qiu F, Ma ZZ, Pei YP, Che Z, Xu X, Yao X, Chen YJ (1997) Studies on chemical constituents of flower-buds of Panax ginseng CA Meyer. Chin J Med Chem 8(3):205–207 (In Chinese)

    Google Scholar 

  • Qiu F, Ma ZZ, Xu SX, Yao XS, Chen YJ, Che ZT (1998) Studies on dammarane-type saponins in the flower-buds of Panax ginseng CA Meyer. J Asian Nat Prod Res 1(2):119–123

    CAS  PubMed  Google Scholar 

  • Qiu F, Ma ZZ, Xu SX, Yao XS, Che CT, Chen YJ (2001) A pair of 24-hydroperoxyl epimeric dammarane saponins from flower-buds of Panax ginseng. J Asian Nat Prod Res 3(3):235–240

    CAS  PubMed  Google Scholar 

  • Qiu YQ, Lu X, Pang T, Ma CF, Li X, Xu GW (2008) Determination of radix ginseng volatile oils at different ages by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. J Sep Sci 31(19):3451–3457

    CAS  PubMed  Google Scholar 

  • Raghavendran HRB, Rekha S, Shin JW, Kim HG, Wang JH, Park HJ, Choi MK, Cho JH, Son CG (2011) Effects of Korean ginseng root extract on cisplatin-induced emesis in a rat-pica model. Food Chem Toxicol 49(1):215–221

    CAS  PubMed  Google Scholar 

  • Raghavendran HRB, Rekha S, Kim HK, Cho JH, Jang SS, Son CG (2012) Ginsenoside rich fraction of Panax ginseng C.A. Meyer improve feeding behavior following radiation-induced pica in rats. Fitoterapia 83(6):1144–1150

    CAS  Google Scholar 

  • Ramachandran U, Divekar HM, Grover SK, Srivastava KK (1990) New experimental model for the evaluation of adaptogenic products. J Ethnopharmacol 29(3):275–281

    CAS  PubMed  Google Scholar 

  • Ramesh T, Kim SW, Hwang SY, Sohn SH, Yoo SK, Kim SK (2012a) Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res 32(9):718–726

    CAS  PubMed  Google Scholar 

  • Ramesh T, Kim SW, Sung JH, Hwang SY, Sohn SH, Yoo SK, Kim SK (2012b) Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp Gerontol 47(1):77–84

    CAS  PubMed  Google Scholar 

  • Reay JL, Kennedy DO, Scholey AB (2008) The behavioural and mood effects of Panax ginseng (G115): a 20 week chronic trial. Appetite 50(2–3):564

    Google Scholar 

  • Rhee YH, Lee SP, Honda K, Inoué S (1990) Panax ginseng extract modulates sleep in unrestrained rats. Psychopharmacology 101(4):486–488

    CAS  PubMed  Google Scholar 

  • Rhim HW, Kim HY, Lee DY, Oh TH, Nah SY (2002) Ginseng and ginsenoside Rg3, a newly identified active ingredient of ginseng, modulate Ca2+ channel currents in rat sensory neurons. Eur J Pharmacol 436(3):151–158

    CAS  PubMed  Google Scholar 

  • Rho MC, Lee HS, Lee SW, Chang JS, Kwon OE, Chung MY, Kim YK (2005) Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng. J Agric Food Chem 53(4):919–922

    CAS  PubMed  Google Scholar 

  • Richter R, Basar S, Koch A, König WA (2005) Three sesquiterpene hydrocarbons from the roots of Panax ginseng C.A. Meyer (Araliaceae). Phytochemistry 66(23):2708–2713

    CAS  PubMed  Google Scholar 

  • Rivera E, Pettersson FE, Inganäs M, Paulie S, Grönvik KO (2005) The Rb1 fraction of ginseng elicits a balanced Th1 and Th2 immune response. Vaccine 23(46–47):5411–5419

    CAS  PubMed  Google Scholar 

  • Roh YS, Kim HB, Kang CW, Kim BS, Nah SY, Kim JH (2010) Neuroprotective effects of ginsenoside Rg3 against 24-OH-cholesterol-induced cytotoxicity in cortical neurons. J Ginseng Res 34(3):246–253

    CAS  Google Scholar 

  • Ruan CC, Liu Z, Li X, Liu X, Wang LJ, Pan HY, Zheng YN, Sun GZ, Zhang YS, Zhang LX (2010) Isolation and characterization of a new ginsenoside from the fresh root of Panax Ginseng. Molecules 15(4):2319–2325

    CAS  PubMed  Google Scholar 

  • Ryu JH, Park JH, Kim TH, Sohn DH, Kim JM, Park JH (1996) A genuine dammarane glycoside, (20E)-ginsenoside F 4 from Korean red ginseng. Arch Pharm Res 19(4):335–336

    CAS  Google Scholar 

  • Ryu JH, Park JH, Eun JH, Jung JH, Sohn DH (1997) A dammarane glycoside from Korean red ginseng. Phytochemistry 44(5):931–933

    CAS  Google Scholar 

  • Ryu JK, Lee T, Kim DJ, Park IS, Yoon SM, Lee HS, Song SU, Suh JK (2005) Free radical-scavenging activity of Korean red ginseng for erectile dysfunction in non-insulin-dependent diabetes mellitus rats. Urology 65(3):611–615

    PubMed  Google Scholar 

  • Saito H, Morita M, Takagi K (1973) Pharmacological studies of Panax ginseng leaves. Jpn J Pharmacol 23(1):43–56

    CAS  PubMed  Google Scholar 

  • Saito H, Yoshida Y, Takagi K (1974) Effect of Panax Ginseng root on exhaustive exercise in mice. Jpn J Pharmacol 24(1):119–127

    CAS  PubMed  Google Scholar 

  • Saito H, Tsuchiya M, Naka S, Takagi K (1977) Effects of Panax ginseng root on conditioned avoidance response in rats. Jpn J Pharmacol 27(4):509–516

    CAS  PubMed  Google Scholar 

  • Sakakibara K, Shibata Y, Higashi T, Sanada S, Shoji J (1975) Effect of ginseng saponins on cholesterol metabolism. I. The level and the synthesis of serum and liver cholesterol in rats treated with ginsenosides. Chem Pharm Bull (Tokyo) 23(5):1009–1016

    CAS  Google Scholar 

  • Sakamoto I, Morimoto K, Tanaka O (1975) Quantitative analysis of dammarane type saponins of ginseng and its application to the evaluation of the commercial Ginseng tea and Ginseng extract. J Pharm Soc Jpn 95(12):1456–1461

    CAS  Google Scholar 

  • Saleh AAS (2012) Effects of taurine and/or ginseng and their mixture on lipid profile and some parameters indicative of myocardial status in streptozotocin-diabetic rats. J Basic Appl Zool 65(5):267–273

    CAS  Google Scholar 

  • Samukawa K, Yamashita H, Matsuda H, Kubo M (1995a) Simultaneous analysis of ginsenosides of various ginseng radix by HPLC. Yakugaku Zasshi 115(3):241–249 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Samukawa K, Yamashita H, Matsuda H, Kubo M (1995b) Simultaneous analysis of saponins in ginseng radix by high performance liquid chromatography. Chem Pharm Bull 43(1):137–141

    CAS  Google Scholar 

  • Sanada S, Shoji J (1978) Studies on the saponins of ginseng. III. Structures of ginsenoside-Rb3 and 20-glucoginsenoside-Rf. Chem Pharm Bull 26(6):1694–1697

    CAS  Google Scholar 

  • Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S (1974a) Studies on the saponins of ginseng. I. Structures of ginsenoside-Ro, -Rb1, -Rb2, -Rc and –Rd. Chem Pharm Bull 22(2):421–428

    CAS  Google Scholar 

  • Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S (1974b) Studies on the saponins of ginseng. II. Structures of ginsenoside-Re,-Rf and –Rg2. Chem Pharm Bull 22(10):2407–2412

    CAS  Google Scholar 

  • Sang CS, Hun YK, Byung HH (1983) Polyacetylenes from Panax ginseng roots. Phytochemistry 22(8):1817–1818

    Google Scholar 

  • Sasaki T, Oh KB, Matsuoka H, Saito M (2008) Effect of Panax ginseng components on the differentiation of mouse embryonic stem cells into cardiac-like cells. Yakugaku Zasshi 128(3):461–467

    CAS  PubMed  Google Scholar 

  • Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I (1994) Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 17(5):635–639

    CAS  PubMed  Google Scholar 

  • Scott GI, Colligan PB, Ren BH, Ren J (2001) Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br J Pharmacol 134:1159–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo JY, Lee JH, Kim NW, Her E, Chang SH, Ko NY, Yoo YH, Kim JW, Seo DW, Han JW, Kim YM, Choi WS (2005) Effect of a fermented ginseng extract, BST204, on the expression of cyclooxygenase-2 in murine macrophages. Int Immunopharmacol 5(5):929–936

    CAS  PubMed  Google Scholar 

  • Shah ZA, Gilani RA, Sharma P, Vohora SB (2005) Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats. J Ethnopharmacol 101(1–3):299–307

    CAS  PubMed  Google Scholar 

  • Shao CJ (1984) Chemical constituents of flower-buds of Panax ginseng-isolation and identification of ginsenoside-Rb3 and ginsenoside-Rc. Zhong Yao Tong Bao 9(4):172–173

    CAS  PubMed  Google Scholar 

  • Shao JW, Jia L (2013) Potential serious interactions between nutraceutical ginseng and warfarin in patients with ischemic stroke. Trends Pharmacol Sci 34(2):85–86

    CAS  PubMed  Google Scholar 

  • Shao CJ, Xu JD, Jaing XK, Cheng GR (1984) Chemical studies on the tetracyclic triterpenic saponins in flowers-buds of Panax ginseng C.A. Meyer. Chem J Chin Univ 5(5):674–676

    CAS  Google Scholar 

  • Shao CJ, Xu JD, Kasai R, Tanaka O (1989) Saponins from flower-buds of Panax ginseng cultivated at Jilin, China. Chem Pharm Bull 37(7):1934–1935

    CAS  Google Scholar 

  • Shen SC, Sun XJ, Tang XH, Huang H (2008) Chemical constituents of stems and leaves of Panax ginseng CA Meyer. J Qiqihar Univ (Nat Sci Ed) 11(3):43–46 (In Chinese)

    Google Scholar 

  • Shibata S (2001) Chemistry and cancer preventing activities of ginseng sapoinins and related triterpenoid compounds. J Korean Med Sci 16(Suppl):S28–S37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shibata S, Itokawa H, Fujita M, Tanak O, Ishii (1962) The structure of panaxadiol a sapogenin of ginseng. Tetrahedron Lett 10:419–422

    Google Scholar 

  • Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T (1963a) Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol. A sapogenin of ginseng roots. (1). Chem Pharm Bull 11(6):759–761

    CAS  PubMed  Google Scholar 

  • Shibata S, Tanaka O, Nagai M, Ishii T (1963b) Studies on the constituents of Japanese and Chinese crude drugs. XII. Panaxadiol. A sapogenin of ginseng roots (2). Chem Pharm Bull 11(6):762–767

    CAS  PubMed  Google Scholar 

  • Shibata S, Ando T, Tanaka O (1966a) Chemical studies on the oriental plant drugs. XVII. The prosapogenin of the ginseng saponins (ginsenosides-Rb1, -Rb2, and -Rc). Chem Pharm Bull (Tokyo) 14(10):1157–1161

    CAS  Google Scholar 

  • Shibata S, Tanaka O, Ando T, Sado M, Tsushima S, Ohsawa T (1966b) Chemical studies on oriental plant drugs. XIV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem Pharm Bull (Tokyo) 14(6):595–600

    CAS  Google Scholar 

  • Shibata Y, Nozaki T, Higahsi T, Sanada S, Shoji J (1976) Stimulation of serum protein synthesis in ginsenoside treated rat. Chem Pharm Bull (Tokyo) 24(11):2818–2824

    CAS  Google Scholar 

  • Shim SC, Chang SK, Hur CW, Kim CK (1987) A polyacetylenic compound from Panax ginseng roots. Phytochemistry 26(10):2849–2850

    CAS  Google Scholar 

  • Shim IS, Won JS, Lee JK, Song DK, Kim SE, Huh SO, Kim YH, Suh HW (2000) Modulatory effect of ginseng total saponin on dopamine release and tyrosine hydroxylase gene expression induced by nicotine in the rat. J Ethnopharmacol 70(2):161–169

    CAS  PubMed  Google Scholar 

  • Shim JY, Kim MH, Kim HD, Ahn JY, Yun YS, Song JY (2010) Protective action of the immunomodulator ginsan against carbon tetrachloride-induced liver injury via control of oxidative stress and the inflammatory response. Toxicol Appl Pharmacol 242(3):318–325

    CAS  PubMed  Google Scholar 

  • Shin KS, Kiyohara H, Matsumoto T, Yamada H (1997) Rhamnogalacturonan II from the leaves of Panax ginseng C.A. Meyer as a macrophage Fc receptor expression-enhancing polysaccharide. Carbohydr Res 300:239–249

    CAS  PubMed  Google Scholar 

  • Shin KS, Kiyohara H, Matsumoto T, Yamada H (1998) Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of Panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities. Carbohydr Res 307(1–2):97–106

    CAS  Google Scholar 

  • Shin JE, Park EK, Kim EJ, Hong YH, Lee KT, Kim DH (2003) Cytotoxicity of compound K (IH-901) and ginsenoside Rh2, main biotransformants of ginseng saponins by Bifidobacteria, against some tumor cells. J Ginseng Res 27(3):129–134

    CAS  Google Scholar 

  • Shin JS, Park NH, Ra JY, Kim YS, Shin M, Hong MK, Hong MC, Kim SH, Kwon HJ, Hong SP, Kim JJ, Bae HS (2009) Panax ginseng CA Meyer modulates the levels of MMP3 in S12 murine articular cartilage cell line. J Ethnopharmacol 124(3):397–403

    CAS  PubMed  Google Scholar 

  • Shin JS, Ahn SC, Choi SW, Lee DU, Kim BY, Baik MY (2010) Ultra high pressure extraction (UHPE) of ginsenosides from Korean Panax ginseng powder. Food Sci Biotechnol 19(3):743–748

    CAS  Google Scholar 

  • Shin TJ, Kim HJ, Kwon BJ, Choi SH, Kim HB, Hwang SH, Lee BH, Lee SM, Zukin RS, Park JH, Kim HC, Rhim H, Lee JH, Nah SY (2012) Gintonin, a ginseng-derived novel ingredient, evokes long-term potentiation through N-methyl-D-aspartic acid receptor activation: involvement of LPA receptors. Mol Cells 34(6):563–572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin JS, Park NH, Ra JY, Kim YS, Shin MK, Hong MC, Kim SH, Kwon HJ, Hong SP, Siraj FM, Sathishkumar N, Kim YJ, Kim SY, Yang DC (2014a) Ginsenoside F2 possesses anti-obesity activity via binding with PPARγ and inhibiting adipocyte differentiation in the 3T3-L1 cell line. J Enzyme Inhib Med Chem (in press)

    Google Scholar 

  • Shin KO, Seo CH, Cho HH, Oh S, Hong SP, Yoo HS, Hong JT, Oh KW, Lee YM (2014b) Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells. Arch Pharm Res 37(9):1183–1192

    Google Scholar 

  • Shukla R, Kumar M (2009) Role of Panax ginseng as an antioxidant after cadmium-induced hepatic injuries. Food Chem Toxicol 47(4):769–773

    CAS  PubMed  Google Scholar 

  • Siddique MS, Eddeb F, Mantle D, Mendelow AD (2000) Extracts of Ginkgo biloba and Panax ginseng protect brain proteins from free radical induced oxidative damage in vitro. Acta Neurochir Suppl 76:87–90

    CAS  PubMed  Google Scholar 

  • Siegel R (1979) Ginseng abuse syndrome: problems with the panacea. JAMA 241:1614–1615

    Google Scholar 

  • Siraj FM, Sathishkumar N, Kim YJ, Kim SY, Yang DC (2014) Ginsenoside F2 possesses anti-obesity activity via binding with PPARγ and inhibiting adipocyte differentiation in the 3T3-L1 cell line. J Enzyme Inhib Med Chem (in press)

    Google Scholar 

  • Smiglielski K, Dolot M, Raj A (2006) Composition of the essential oils of ginseng roots of Panax quinquefolium L. and Panax ginseng C.A. Meyer. J Essent Oil Bear Plant 9(3):261–266

    Google Scholar 

  • Solov’eva TF, Khomenko VA, Uvarova NI, Konstantinova NA, Faustov VS, Elyakov GB (1989) Chemical investigation of biomass of a culture of ginseng cells III. Polysaccharides of a callus culture of ginseng. Chem Nat Compd 25:652–654

    Google Scholar 

  • Song JY, Han SK, Son EH, Pyo SN, Yun YS, Yi SY (2002) Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol 2(7):857–865

    CAS  PubMed  Google Scholar 

  • Song ZJ, Moser C, Wu H, Faber V, Kharazmi A, Høiby N (2003) Cytokine modulating effect of ginseng treatment in a mouse model of Pseudomonas aeruginosa lung infection. J Cyst Fibros 2(3):112–119

    PubMed  Google Scholar 

  • Song MY, Kim BS, Kim HJ (2014) Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women. J Ginseng Res 38(2):106–115

    PubMed Central  PubMed  Google Scholar 

  • Sonoda Y, Kasahara T, Mukaida N, Shimizu N, Tomoda M, Takeda T (1998) Stimulation of interleukin-8 production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacology 38(3):287–294

    CAS  PubMed  Google Scholar 

  • Sørensen H, Sonne J (1996) A double-masked study of the effects of ginseng on cognitive functions. Curr Ther Res 57(12):959–968

    Google Scholar 

  • Su CF, Cheng JT, Liu IM (2007) Increase of acetylcholine release by Panax ginseng root enhances insulin secretion in Wistar rats. Neurosci Lett 412(2):101–104

    CAS  PubMed  Google Scholar 

  • Su W, Sun AJ, Xu DL, Zhang HQ, Yang L, Yuan LY, Jia JG, Zou YZ, Wu YL, Wang KQ, Ge JB (2010) Inhibiting effects of total saponins of Panax ginseng on immune maturation of dendritic cells induced by oxidized-low density lipoprotein. Cell Immunol 263(1):99–104

    CAS  PubMed  Google Scholar 

  • Su F, Yuan L, Zhang LJ, Hu SH (2012) Ginsenosides Rg1 and Re act as adjuvant via TLR4 signaling pathway. Vaccine 30(27):4106–4112

    CAS  PubMed  Google Scholar 

  • Su XY, Pei ZY, Hu SH (2014) Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol 20(2):283–289

    CAS  PubMed  Google Scholar 

  • Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M (2009) Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem Pharm Bull (Tokyo) 57(3):283–287

    CAS  Google Scholar 

  • Sumiyoshi M, Sakanaka M, Kimura Y (2010) Effects of Red Ginseng extract on allergic reactions to food in Balb/c mice. J Ethnopharmacol 132(1):206–212

    CAS  PubMed  Google Scholar 

  • Sun XB, Matsumoto T, Kiyohara H, Hirano M, Yamada H (1991) Cytoprotective activity of pectic polysaccharides from the root of Panax ginseng. J Ethnopharmacol 31(1):101–107

    CAS  PubMed  Google Scholar 

  • Sun XB, Matsumoto T, Yamada H (1992a) Anti-ulcer activity and mode of action of the polysaccharide fraction from the leaves of Panax ginseng. Planta Med 58(5):432–435

    CAS  PubMed  Google Scholar 

  • Sun XB, Matsumoto T, Yamada H (1992b) Purification of an anti-ulcer polysaccharide from the leaves of Panax ginseng. Planta Med 58(5):445–448

    CAS  PubMed  Google Scholar 

  • Sun XB, Matsumoto T, Yamada H (1994) Purification of immune complexes clearance enhancing polysaccharide from the leaves of Panax ginseng, and its biological activities. Phytomedicine 1(3):225–231

    CAS  PubMed  Google Scholar 

  • Sun GZ, Liu Z, Li XG, Zheng YN, Wang JY (2005) Isolation and identification of two malonylginsenosides from the fresh root of Panax ginseng. Chin J Anal Chem 33(12):1783–1786

    CAS  Google Scholar 

  • Sun JH, Hu SH, Song XM (2007) Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice. Vaccine 25(6):114–1120

    Google Scholar 

  • Sun BS, Gu LJ, Fang ZM, Wang CY, Wang Z, Lee MR, Zheng Li Z, Li JJ, Sung CK (2009) Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC–ELSD. J Pharm Biomed Anal 50(1):15–22

    CAS  PubMed  Google Scholar 

  • Sun MW, Huang CL, Wang C, Zheng JH, Zhang P, Xu YS, Chen H, Shen WL (2013) Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise training. Biochem Biophys Res Commun 441(1):169–174

    CAS  PubMed  Google Scholar 

  • Sung J, Han KH, Zo JH, Park HJ, Kim CH, Oh BH (2000) Effects of red ginseng upon vascular endothelial function in patients with essential hypertension. Am J Chin Med 28(2):205–216

    CAS  PubMed  Google Scholar 

  • Sunwoo HH, Kim CT, Kim DY, Maeng JS, Cho CW, Lee SJ (2013) Extraction of ginsenosides from fresh ginseng roots (Panax ginseng CA Meyer) using commercial enzymes and high hydrostatic pressure. Biotechnol Lett 35(7):1017–1022

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Ito Y, Konno C, Furuya T (1991a) Effects of tissue cultured ginseng on the function of the stomach and small intestine. Yakugaku Zasshi 111(11):765–769

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Ito Y, Konno C, Furuya T (1991b) Effects of tissue cultured ginseng on gastric secretion and pepsin activity. Yakugaku Zasshi 111(12):770–774 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Takagi K, Saito H, Nabata H (1972a) Pharmacological studies of Panax ginseng root: estimation of pharmacological actions of Panax ginseng root. Jpn J Pharmacol 22:245–259

    CAS  PubMed  Google Scholar 

  • Takagi K, Saito H, Tsuchiya M (1972b) Pharmacological studies of Panax ginseng root: pharmacological properties of a crude saponin fraction. Jpn J Pharmacol 22:339–346

    CAS  PubMed  Google Scholar 

  • Takagi K, Saito H, Tsuchiya M (1974) Effect of Panax ginseng root on spontaneous movement and exercise in mice. Jpn J Pharmacol 24(1):41–48

    CAS  PubMed  Google Scholar 

  • Takahashi M, Isoi K, Yoshikura M, Osugi T (1961) Studies on the components of Panax ginseng C. A. Meyer. I On the ethereal extract of ginseng radix alba. (1). β-Sitosterol, its glucoside and others. Yakugaku Zasshi 81(5):771–773

    CAS  Google Scholar 

  • Takatori K, Kato T, Asano S, Ozaki M, Nakashima T (1963) Choline in Panax ginseng C.A. Meyer. Chem Pharm Bull (Tokyo) 11(10):1342–1343

    CAS  Google Scholar 

  • Takeda A, Yonezawa M, Katoh N (1981) Restoration of radiation injury by ginseng. I: responses of X-irradiated mice to ginseng extract. J Radiat Res 22(3):323–335

    CAS  PubMed  Google Scholar 

  • Takeda A, Katoh N, Yonezawa M (1982) Restoration of radiation injury by ginseng. III: radioprotective effect of thermostable fraction of ginseng extract on mice, rats and guinea pigs. J Radiat Res 23:150–167

    CAS  PubMed  Google Scholar 

  • Takiura K, Nakagawa I (1963a) Studies on oligosaccharides. IV. Separation of oligosaccharides and identification of disaccharides in radix ginseng. Yakugaku Zasshi 83(3):298–300 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Takiura K, Nakagawa I (1963b) Studies on oligosaccharides. V. Ginseng trisaccharides. (1). Yakugaku Zasshi 83(3):301–304 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Takiura K, Nakagawa I (1963c) Studies on oligosaccharides. VI. Ginseng trisaccharides. (2). Yakugaku Zasshi 83(3):305–308 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Tamura T, Cui X, Sakaguchi N, Akashi M (2008) Ginsenoside Rd prevents and rescues rat intestinal epithelial cells from irradiation-induced apoptosis. Food Chem Toxicol 46(9):3080–3089

    CAS  PubMed  Google Scholar 

  • Tanaka O, Nagai M, Shibata S (1966) Chemical studies on the oriental plant drugs. XVI. The stereochemistry of protopanaxadiol, a genuine sapogenin of ginseng. Chem Pharm Bull (Tokyo) 14(10):1150–11506

    CAS  Google Scholar 

  • Tang W, Eisenbrand G (1992) Panax ginseng CA Mey. In: Tang W, Eisenbrand G (eds) Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Springer, Berlin, pp 711–737

    Google Scholar 

  • Tanizawa H, Numano H, Odani T, Takino Y, Hayashi T, Arichi S (1981) Study of the saponin of Panax ginseng C. A. Meyer. I. Inhibitory effect on adrenal atrophy, thymus atrophy and the decrease of serum k+ concentration induced by cortisone acetate in unilateral adrenalectomized rats. Yakugaku Zasshi 101(2):169–173

    CAS  PubMed  Google Scholar 

  • Tao LN, Meng Q, Yin JY, Xing R, Guo HR (2009) A new panaxadiol from the acid hydrolysate of Panax ginseng. Chin Chem Lett 20(6):687–689

    CAS  Google Scholar 

  • Teng CM, Kuo SC, Ko FN, Lee JC, Lee LG, Chen SC, Huang TF (1989) Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim Biophys Acta 990(3):315–320

    CAS  PubMed  Google Scholar 

  • Tian CJ, Kim YH, Kim YC, Park KT, Kim SW, Kim YJ, Lim HJ, Choung YH (2013) Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice. Neurotoxicology 34:42–50

    PubMed  Google Scholar 

  • Tian CJ, Kim YH, Lim HJ, Kim YS, Park HY, Choung YH (2014) Red ginseng delays age-related hearing and vestibular dysfunction in C57BL/6 mice. Exp Gerontol 57:224–232

    PubMed  Google Scholar 

  • Tode T, Kikuchi Y, Hirata J, Kita T, Imaizumi E, Nagata I (1993a) Inhibitory effects of oral administration of ginsenoside Rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary. Nihon Sanka Fujinka Gakkai Zasshi 45(11):1275–1282 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I (1993b) Inhibitory effects by oral administration of ginsenoside Rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol 120(1–2):24–26

    CAS  PubMed  Google Scholar 

  • Tode T, Kikuchi Y, Hirata J, Kita T, Nakata H, Nagata I (1999) Effect of Korean red ginseng on psychological functions in patients with severe climacteric syndromes. Int J Gynecol Obstet 67(3):169–174

    CAS  Google Scholar 

  • Tokuyama S, Takahashi M, Kaneto H (1996) The effect of ginseng extract on locomotor sensitization and conditioned place preference induced by methamphetamine and cocaine in mice. Pharmacol Biochem Behav 54(4):671–676

    CAS  PubMed  Google Scholar 

  • Tomoda M, Shimada K, Konno C, Hikino H (1985) Structure of panaxan B, a hypoglycaemic glycan of Panax ginseng roots. Phytochemistry 24(10):2431–2433

    CAS  Google Scholar 

  • Tong CN, Matsuda H, Kubo M (1992) Pharmacological study on Panax ginseng C. A. Meyer. XV. Effects of 70% methanolic extract from red and white ginseng on the antitumor activity of mitomycin C. Yakugaku Zasshi 112(11):856–965 (In Japanese)

    CAS  PubMed  Google Scholar 

  • Tran TL, Kim YR, Yang JL, Oh DR, Dao TR, Oh WK (2014) Dammarane triterpenes from the leaves of Panax ginseng enhance cellular immunity. Bioorg Med Chem 22(1):499–504

    CAS  PubMed  Google Scholar 

  • Tsang D, Yeung HW, Tso WW, Peck H (1985) Ginseng saponins: influence on neurotransmitter uptake in rat brain synaptosomes. Planta Med 51(3):221–224

    Google Scholar 

  • Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, Oshita S (2011) Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. Life Sci 88(15–16):725–729

    CAS  PubMed  Google Scholar 

  • Tung NH, Song GY, Park YJ, Kim YH (2009) Two new dammarane-type saponins from the leaves of Panax ginseng. Chem Pharm Bull 57:1412–1414

    PubMed  Google Scholar 

  • Tung NH, Cho KW, Kim JA, Song GY, Kim YH (2010a) Dammarane-type glycosides from the steamed flower-buds of Panax ginseng. Bull Korean Chem Soc 31(5):1381–1384

    CAS  Google Scholar 

  • Tung NH, Son JH, Cho KW, Kim JA, Hyun JH, Kang HK, Song GY, Park CJ, Kim YH (2010b) Phenolic components from the leaves of Panax ginseng and their effects on HL-60 human leukemia cells. Food Sci Biotechnol 19(1):271–274

    CAS  Google Scholar 

  • Tung NH, Song GY, Kim JA, Hyun JH, Kang HK, Young HoKim YH (2010c) Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorg Med Chem Lett 20(1):309–314

    CAS  Google Scholar 

  • Tung NH, Song GY, Minh CV, Kiem PV, Jin LG, Boo HJ, Kang HK, Kim YH (2010d) Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem Pharm Bull (Tokyo) 58(8):1111–1115

    CAS  Google Scholar 

  • Tung NH, Song GY, Nhiem NX, Ding Y, Tai BH, Jin LG, Lim CM, Hyun JW, Park CJ, Kang HK, Kim YH (2010e) Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J Agric Food Chem 58:868–874

    CAS  PubMed  Google Scholar 

  • Tung NH, Quang TH, Son JH, Koo JE, Hong HJ, Koh YS, Song GY, Kim YH (2011) Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPS-stimulated IL-12 production in bone marrow-derived dendritic cells. Arch Pharm Res 34(4):681–685

    PubMed  Google Scholar 

  • Ushiyama M, Furuya T (1989) Glycosylation of phenolic compounds by root culture of Panax ginseng. Phytochemistry 28(11):3009–3013

    CAS  Google Scholar 

  • Ushiyama M, Asada Y, Yoshikawa T, Furuya T (1989) Biotransformation of aromatic carboxylic acids by root culture of Panax ginseng. Phytochemistry 28(7):1859–1869

    CAS  Google Scholar 

  • Uvarova NI, Gorshkova RP, Strigina LI, Elyakov GB, Kochetkov NK (1965) Glycosides from ginseng roots IV. Isolation of new glycosides from ginseng. Chem Nat Compd 1(2):63–66

    Google Scholar 

  • Uvarova NI, Ferens NA, Shaposhnikove, ELyakov GB (1970) Study of the carbohydrate chains of panaxosides B and C, glycosides from the roots of Panax ginseng. Chem Nat Compd 6(3):312–315

    CAS  Google Scholar 

  • Uvarova NI, Makhan’kov VV, Prokopenko GI, Slabko MG (1987) An investigation of the chemical composition of a suspension culture of ginseng cells. Chem Nat Compd 23:387–388

    Google Scholar 

  • Uvarova NI, Makhan’kov VV, Slabko MG, Propenko GI, Malinovskaya GV (1988) Chemical investigation of biomass of a culture of ginseng cells. II. 6-O-acyl derivatives of β-sitosterol β-glucoside. Chem Nat Compd 24:399–400

    Google Scholar 

  • Van Kampen JM, Robertson H, Hagg T, Drobitch R (2003) Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 184(1):521–529

    PubMed  Google Scholar 

  • Van Kampen JM, Baranowski DB, Shaw CA, Kay DG (2014) Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp Gerontol 50:95–105

    PubMed  Google Scholar 

  • Vera-Barrios E, Hernandez-Dorta A, Suarez-Benitez N, Diaz-Marrero G, Gonzalez-Gonzalez I (2013) 1362 – manic episode induced by consumption of Korean ginseng (Panax schinsen). Eur Psychiatry 28(Sup 1):1

    Google Scholar 

  • Voces J, Alvarez AI, Vila L, Ferrando A, Cabral de Oliveira C, Prieto JG (1999) Effects of administration of the standardized Panax ginseng extract G115 on hepatic antioxidant function after exhaustive exercise. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123(2):175–184

    CAS  PubMed  Google Scholar 

  • Voces J, Cabral de Oliveira AC, Prieto JG, Vila L, Perez AC, Duarte ID, Alvarez AI (2004) Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats. Braz J Med Biol Res 37(12):1863–1871

    CAS  PubMed  Google Scholar 

  • Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, Choi M, Naeem A (2008a) Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Dis 18(1):46–56

    PubMed  Google Scholar 

  • Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Buono MD, Lee KS, Leiter LA, Nam KY, Arnason JT, Choi M, Naeem A (2008b) Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Dis 18(1):45–56

    Google Scholar 

  • Wakabayashi C, Hasegawa H, Murata J, Saiki I (1997) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 9(8):411–417

    CAS  PubMed  Google Scholar 

  • Wan DB, Jiao LL, Yang HM, Liu SY (2012) Structural characterization and immunological activities of the water-soluble oligosaccharides isolated from the Panax ginseng roots. Planta 235(6):1289–1297

    CAS  PubMed  Google Scholar 

  • Wang HX, Ng TB (2004) A ribonuclease from Chinese ginseng (Panax ginseng) flowers. Protein Expr Purif 33(2):195–199

    CAS  PubMed  Google Scholar 

  • Wang HY, Pei YP, Chen YJ (1992) Studies on the chemical constituents of flower-buds of Panax ginseng CA Meyer. Chin J Med Chem 2(2):31–35 (In Chinese)

    Google Scholar 

  • Wang JY, Li XG, Zheng YN (1993) Isolation and identification of malonyl-ginsenosides from the fresh root of Panax ginseng C.A. Meyer. Zhongguo Zhong Yao Za Zhi (In Chinese) 18(2):105–107 (In Chinese)

    CAS  Google Scholar 

  • Wang LCH, Wang B, Ng SY, Lee TF (2006) Effects of ginseng saponins on β-amyloid-induced amnesia in rats. J Ethnopharmacol 103(1):103–108

    CAS  PubMed  Google Scholar 

  • Wang W, Zhao YQ, Rayburn ER, Hill DL, Wang H, Zhang RW (2007) In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol 59(5):589–601

    CAS  PubMed  Google Scholar 

  • Wang LB, Wu ZH, Gao HY, Huang J, Sun BH, Wu LJ (2008) A new compound with cytotoxic activities from the leaves of Panax ginseng C.A. Meyer. Chin Chem Lett 19(7):837–840

    CAS  Google Scholar 

  • Wang HW, Peng DC, Xie JT (2009a) Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin Med 4:20

    PubMed Central  PubMed  Google Scholar 

  • Wang W, Rayburn ER, Zhao YQ, Wang H, Zhang RW (2009b) Novel ginsenosides 25-OH-PPD and 25-OCH3-PPD as experimental therapy for pancreatic cancer: anticancer activity and mechanisms of action. Cancer Lett 278(2):241–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Flaisher-Grinberg S, Li SS, Liu HB, Sun L, Zhou YF, Einat H (2010a) Antidepressant-like effects of the active acidic polysaccharide portion of ginseng in mice. J Ethnopharmacol 132(1):65–69

    CAS  PubMed  Google Scholar 

  • Wang J, Li SS, Fan YY, Chen Y, Liu D, Cheng HR, Gao XG, Zhou YF (2010b) Anti-fatigue activity of the water-soluble polysaccharidesisolated from Panax ginseng C. A. Meyer. J Ethnopharmacol 130(2):421–423

    CAS  PubMed  Google Scholar 

  • Wang J, Zuo G, Li J, Guan T, Li C, Jiang R, Xie B, Lin X, Li F, Wang Y, Chen D (2010c) Induction of tumoricidal activity in mouse peritoneal macrophages by ginseng polysaccharide. Int J Biol Macromol 46(4):389–395

    CAS  PubMed  Google Scholar 

  • Wang Y, Jiang RZ, Li GR, Chen YH, Luo HM, Gao Y, Gao QP (2010d) Structural and enhanced memory activity studies of extracts from Panax ginseng root. Food Chem 119(3):969–973

    CAS  Google Scholar 

  • Wang J, Gao WY, Zhang J, Zuo BM, Zhang LM, Huang LQ (2012) Advances in study of ginsenoside biosynthesis pathway in Panax ginseng CA Meyer. Acta Physiol Plant 34(2):397–403

    CAS  Google Scholar 

  • Wang HP, Yang XB, Yang XW, Liu JX, Xu W, Zhang YB, Zhang LX, Wang YP (2013a) Ginsenjilinol, a new protopanaxatriol-type saponin with inhibitory activity on LPS-activated NO production in macrophage RAW 264.7 cells from the roots and rhizomes of Panax ginseng. J Asian Nat Prod Res 15(5):579–587

    CAS  PubMed  Google Scholar 

  • Wang Y, Chen YH, Xu H, Luo HM, Jiang RZ (2013b) Analgesic effects of glycoproteins from Panax ginseng root in mice. J Ethnopharmacol 148(3):946–950

    CAS  PubMed  Google Scholar 

  • Wang ZZ, Meng JJ, Xia YJ, Meng YM, Du L, Zhang ZJ, Wang EH, Shan FP (2013c) Maturation of murine bone marrow dendritic cells induced by acidic ginseng polysaccharides. Int J Biol Macromol 52:93–100

    Google Scholar 

  • Wang J, Sun CX, Zheng Y, Pan HL, Zhou YF, Fan YY (2014a) The effective mechanism of the polysaccharides from Panax ginseng on chronic fatigue syndrome. Arch Pharm Res 37(4):530–538

    CAS  PubMed  Google Scholar 

  • Wang P, Wei X, Zhang FJ, Yang K, Qu C, Luo HQ, He LZ (2014b) Ginsenoside Rg1 of Panax ginseng stimulates the proliferation, odontogenic/osteogenic differentiation and gene expression profiles of human dental pulp stem cells. Phytomedicine 21(2):177–183

    CAS  PubMed  Google Scholar 

  • Washida D, Kitanaka S (2003) Determination of polyacetylenes and ginsenosides in Panax species using high performance liquid chromatography. Chem Pharm Bull (Tokyo) 51(11):1314–1317

    CAS  Google Scholar 

  • Watanabe J, Oh KW, Kim HS, Takahashi M, Kaneto H (1988) A non-opioid mechanism in the inhibitory effect of ginseng saponins on electrically evoked contractions of guinea-pig ileum and mouse vas deferens. J Pharmacobiodyn 11(6):453–458

    CAS  PubMed  Google Scholar 

  • Wee YC, Keng H (1990) An illustrated dictionary of Chinese medicinal herbs. Times Editions, Singapore, 184 pp

    Google Scholar 

  • Wee JJ, Kim YS, Kyung JS, Song YB, Do JH, Kim DC, Lee SD (2010) Identification of anticoagulant components in Korean red ginseng. J Ginseng Res 34(4):355–362

    CAS  Google Scholar 

  • Wei Y, Ma CM, Hattori M (2009) Anti-HIV protease triterpenoids from the acid hydrolysate of Panax ginseng. Phytochem Lett 2(2):63–66

    CAS  Google Scholar 

  • Wei XJ, Su F, Su XY, Hu TJ, Hu SH (2012) Stereospecific antioxidant effects of ginsenoside Rg3 on oxidative stress induced by cyclophosphamide in mice. Fitoterapia 83(4):636–642

    CAS  PubMed  Google Scholar 

  • Weng CY, Lu KH, Sheen LY (2014) Protective effects of ginseng essence on CCl4-induced oxidative stress and liver injury in rats. Eur J Integr Med 6(1):128–129

    Google Scholar 

  • Wiklund I, Karlberg J, Lund B (1994) A double-blind comparison of the effect on quality of life of a combination of vital substances including standardized ginseng G115 and placebo. Curr Ther Res 55(1):32–42

    Google Scholar 

  • Won YJ, Kim BK, Shin YK, Jung SH, Yoo SK, Hwang SY, Sung JH, Kim SK (2014) Pectinase-treated Panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol 53:57–66

    CAS  PubMed  Google Scholar 

  • Wong CPF, Bandyopadhyay A, Chen CK (2011) Effects of Panax ginseng supplementation on physiology responses during endurance performance. J Mens Health 8(1):S78–S80

    Google Scholar 

  • Wu LJ, Wang LB, Gao HY, Wu B, Song XM, Tang ZS (2007) A new compound from the leaves of Panax ginseng. Fitoterapia 78(7–8):556–560

    CAS  PubMed  Google Scholar 

  • Xia LJ, Han R (1996) Differentiation of B16 melanoma cells induced by ginsenoside RH2. Yao Xue Xue Bao 31(10):742–745 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Xia XC, Jiang BW, Liu W, Wang P, Mou YH, Liu YF, Zhao YQ, Bi XL (2014) Anti-tumor activity of three novel derivatives of ginsenoside on colorectal cancer cells. Steroids 80:24–29

    CAS  PubMed  Google Scholar 

  • Xiang YZ, Shang HC, Gao XM, Zhang BL (2008) A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 22:851–858

    PubMed  Google Scholar 

  • Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M, Polonsky KS, Yuan CS (2002) Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 9(3):254–258

    CAS  PubMed  Google Scholar 

  • Xie JT, Wang CZ, Wang AB, Wu J, Basila D, Yuan CS (2005) Antihyperglycemic effects of total ginsenosides from leaves and stem of Panax ginseng. Yao Xue Xue Bao 26(9):1104–1110

    CAS  Google Scholar 

  • Xu SX, Wang NL, Li YH (1986) Studies on the chemical constituents of Chinese red ginseng (II). Acta Pharm Sin 21(5):356–360 (In Chinese)

    CAS  Google Scholar 

  • Xu YX, Shi JS, Jiang ZL (2005) Inhibitory influence of ginsenoside Rb3 on activation of strychnine-sensitive glycine receptors in hippocampal neurons of rat. Brain Res 1037(1–2):99–106

    CAS  PubMed  Google Scholar 

  • Xu CJ, Teng JJ, Chen WD, Ge Q, Yang ZQ, ChunyingYu CY, Yang ZR, Jia W (2010) 20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests. Prog Neuropsychopharmacol Biol Psychiatry 34(8):1402–1411

    CAS  PubMed  Google Scholar 

  • Xu QM, Jia D, Gao HW, Zhang MM, He WJ, Pan S, Liu YL, Li XR, Cui JH, Yang SL (2013) In vitro and in vivo protective effects of gingenosides on acute renal injury induced by cantharidin. J Funct Foods 5(4):2012–2018

    CAS  Google Scholar 

  • Yahara S, Matsuura K, Kasai R, Tanaka O (1976a) Saponins of buds and flowers of Panax ginseng C.A. Meyer. (1). Isolation of ginsenosides-Rd, -Re, and -Rg1. Chem Pharm Bull 24(12):3212–3213

    CAS  Google Scholar 

  • Yahara S, Tanaka O, Komori T (1976b) Saponins of the leaves of Panax ginseng C. A. Meyer. Chem Pharm Bull 24(9):2204–2208

    CAS  Google Scholar 

  • Yahara S, Kaji K, Tanaka O (1979) Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C.A.Meyer. Chem Pharm Bull (Tokyo) 27:88–92

    CAS  Google Scholar 

  • Yamada M (1955) Studies on Panax ginseng. Folia Pharmacol Jpn 51(4):390–399 (In Japanese)

    CAS  Google Scholar 

  • Yamada H, Otsuka H, Kiyohara H (1995) Fractionation and characterization of anticomplementary and mitogenic substances from Panax ginseng extract G-115. Phytother Res 9:264–269

    CAS  Google Scholar 

  • Yamaguchi H, Kasai R, Matsuura H, Tanaka O, Fuwa T (1988) High-performance liquid chromatographic analysis of acidic saponins of ginseng and related plants. Chem Pharm Bull (Tokyo) 36(9):3468–3473

    CAS  Google Scholar 

  • Yamamoto M, Kumagai A, Yamamura Y (1977a) Stimulatory effect of Panax ginseng principles on DNA and protein synthesis in rat testes. Arzneimittelforschung 27(7):1404–1405

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Takeuchi N, Kumagai A, Yamamura Y (1977b) Stimulatory effect of Panax ginseng principles on DNA, RNA, protein and lipid synthesis in rat bone marrow. Arzneimittelforschung 27(6):1169–1173

    CAS  PubMed  Google Scholar 

  • Yamasaki K, Yokoyama H, Miyano K, Nunoura Y, Higashihara M, Kitahata S, Yoneda K, Umezawa C (1989) Purification and characterization of β-amylase from ginseng. Chem Pharm Bull (Tokyo) 37(4):973–978

    CAS  Google Scholar 

  • Yang Z (1987) Chemical studies on the stems of Panax ginseng C.A. Meyer: (1). Isolation and identification of ginseng stem saponins I, II and III. Zhong Yao Tong Bao 12(3):36–40 (In Chinese)

    CAS  Google Scholar 

  • Yang YH, Yang XB, Wang Y, Wang ZZ (2007) Analysis of fatty acid and volatile oil components in Panax ginseng CA Mey. by GC/MS. J Shaanxi Norm Univ (Nat Sci Ed) 35(1):77–81 (In Chinese)

    CAS  Google Scholar 

  • Yang MC, Seo DS, Choi SU, Park YH, Lee KR (2008) Polyacetylenes from the roots of cultivated-wild ginseng and their cytotoxicity in vitro. Arch Pharm Res 31(2):154–159

    CAS  PubMed  Google Scholar 

  • Yang L, Xu SJ, Liu CJ, Su ZJ (2009) In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 395(5):1441–1451

    CAS  PubMed  Google Scholar 

  • Yang ZH, Sun K, Yan ZH, Suo WH, Fu GH, Lu Y (2010) Panaxynol protects cortical neurons from ischemia-like injury by up-regulation of HIF-1α expression and inhibition of apoptotic cascade. Chem Biol Interact 183(1):165–171

    CAS  PubMed  Google Scholar 

  • Ye RD, Kong XW, Yang QZ, Han JL, Zhang YX, Zhao G (2011a) Ginsenoside Rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice. Neuropharmacology 61(4):815–824

    CAS  PubMed  Google Scholar 

  • Ye RD, Yang QZ, Kong XW, Han JL, Zhang X, Zhang YX, Li P, Liu JF, Shi M, Xiong LZ, Zhao G (2011b) Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 58(3):391–398

    CAS  PubMed  Google Scholar 

  • Yeo M, Kim DK, Cho SW, Hong HD (2008) Ginseng, the root of Panax ginseng C.A. Meyer, protects ethanol-induced gastric damages in rat through the induction of cytoprotective heat-shock protein 27. Dig Dis Sci 53(3):606–613

    PubMed  Google Scholar 

  • Yokozawa T, Oura H (1976) Effect of ginseng extract on lipid and sugar metabolism. II. Nutritional states in rats. Chem Pharm Bull 24(5):987–990

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Oura H (1979) Effect of ginseng saponin on serine dehydratase activity in rat liver. Chem Pharm Bull 27(10):2494–2497

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Seno H, Oura H (1975) Effect of ginseng extract on lipid and sugar metabolism. I. Metabolic correlation between liver and adipose tissue. Chem Pharm Bull 23(12):3095–3100

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Kanai K, Takefuji M, Oura H (1976) Effect of ginseng saponin on liver glycogen content. Chem Pharm Bull 24(12):3202–3204

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Kitahara N, Okuda S, Oura H (1979) Effect of ginseng principle on pyruvate kinase activity in rat liver. Chem Pharm Bull 2:419–423

    Google Scholar 

  • Yokozawa T, Kobayashi T, Oura H, Kawashima Y (1984a) Stimulation of lipid and sugar metabolism in ginsenoside-Rb2 treated rats. Chem Pharm Bull 32(7):2766–2772

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Kobayashi T, Kawai A, Oura H, Kawashima Y (1984b) Stimulation of the lipogenic pathway in ginsenoside-Rb2 treated rats. Chem Pharm Bull 32(11):4490–4496

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Kobayashi T, Kawai A, Oura H, Kawashima Y (1985a) Hyperlipemia-improving effects of ginsenoside-Rb2 in cholesterol-fed rats. Chem Pharm Bull 33(2):722–729

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Kobayashi T, Oura H, Kawashima Y (1985b) Hyperlipemia-improving effects of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull 33(9):3893–3898

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Kobayashi T, Oura H, Kawashima Y (1985c) Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull 33(2):869–872

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Kobayashi T, Oura H, Kawashima Y (1987a) Effect of ginsenoside-Rb2 on nitrogen compounds in streptozotocin-diabetic rats. Chem Pharm Bull 35(10):4208–4214

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Oura H, Kawashima Y (1987b) Effect of serial administration of ginsenoside-Rb2 in diabetic rats: in terms of carbohydrate and lipid metabolites. Chem Pharm Bull 35(12):4872–4877

    CAS  PubMed  Google Scholar 

  • Yokozawa T, Yasui T, Oura H (1993) Stimulation of RNA polymerase activity by ginsenoside‐Rb2 in diabetic rats. Phytother Res 7(3):240–243

    CAS  Google Scholar 

  • Yonekawa M (1926) On the pharmacological action of the glucoside of Korean ginseng. Keio Igaku Zasshi 6:633–657

    Google Scholar 

  • Yonezawa M (1976) Restoration of radiation injury by intraperitoneal injection of ginseng extract in mice. J Radiat Res 17(2):111–113

    CAS  PubMed  Google Scholar 

  • Yonezawa M, Katoh N, Takeda A (1981) Restoration of radiation injury by ginseng. II: some properties of the radioprotective substances. J Radiat Res 22:336–343

    CAS  PubMed  Google Scholar 

  • Yonezawa M, Katoh N, Takeda A (1985) Restoration of radiation injury by ginseng. IV: stimulation of recoveries in CFUs and megakaryocyte counts related to the prevention of occult blood appearance in X-irradiated mice. J Radiat Res 26:436–442

    CAS  PubMed  Google Scholar 

  • Yoo HH, Park JH (2012) Cyclooxygenase inhibitory activity of ginsenosides from heat-processed ginseng. Food Chem 133(3):998–1000

    CAS  Google Scholar 

  • Yoon SR, Nah JJ, Shin YH, Kim SK, Nam KY, Choi HS, Nah SY (1998) Ginsenosides induce differential antinociception and inhibit substance P induced-nociceptive response in mice. Life Sci 62(21):PL 319–PL 325

    CAS  Google Scholar 

  • Yoon JY, Ha BH, Woo JS, Lim YH, Kim KH (2002) Purification and characterization of a 28-kDa major protein from ginseng root. Comp Biochem Physiol B Biochem Mol Biol 132(3):551–557

    PubMed  Google Scholar 

  • Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6(6):449–453

    CAS  PubMed  Google Scholar 

  • Yoshikawa M, Sugimoto S, Nakamura S, Matsuda H (2007a) Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds of Panax ginseng. Chem Pharm Bull (Tokyo) 55(4):571–576

    CAS  Google Scholar 

  • Yoshikawa M, Sugimoto S, Nakamura S, Sakumae H, Matsuda H (2007b) Medicinal flowers. XVI. New dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng. Chem Pharm Bull (Tokyo) 55(7):1034–1038

    CAS  Google Scholar 

  • Yoshimura H, Watanabe K, Ogawa N (1988a) Acute and chronic effects of ginseng saponins on maternal aggression in mice. Eur J Pharmacol 150(3):319–324

    CAS  PubMed  Google Scholar 

  • Yoshimura H, Watanabe K, Ogawa N (1988b) Psychotropic effects of ginseng saponins on agonistic behavior between resident and intruder mice. Eur J Pharmacol 146(2–3):291–297

    CAS  PubMed  Google Scholar 

  • Yu BS, Kim AR, Chung HH, Yoshikawa W, Akutsu H, Kyogoku Y (1985) Effects of purified ginseng saponins on multilamellar liposomes. Chem Biol Interact 56(2–3):303–319

    CAS  PubMed  Google Scholar 

  • Yu JY, Jin YR, Lee JJ, Chung JH, Noh JY, You SH, Kim KN, Im JH, Lee JH, Seo JM, Han HJ, Lim Y, Park ES, Kim TJ, Shin KS, Wee JJ, Park JD, Yun YP (2006) Antiplatelet and antithrombotic activities of Korean Red Ginseng. Arch Pharm Res 29(10):898–903

    CAS  PubMed  Google Scholar 

  • Yu LC, Chen SC, Chang WC, Huang YC, Lin KMC, Lai PH, Sung HW (2007) Stability of angiogenic agents, ginsenoside Rg1 and Re, isolated from Panax ginseng: in vitro and in vivo studies. Int J Pharm 328(2):168–176

    CAS  PubMed  Google Scholar 

  • Yu L, Zhang X, Li SS, Liu XY, Sun L, Liu HB, Iteku J, Zhou YF, Tai GH (2010) Rhamnogalacturonan I domains from ginseng pectin. Carbohydr Polym 79(4):811–817

    CAS  Google Scholar 

  • Yuan CS, Wei G, Dey L, Karrison T, Nahlik L, Maleckar S, Kasza K, Ang-Lee M, Moss J (2004) Brief communication: American ginseng reduces warfarin’s effect in healthy patients: a randomized, controlled trial. Ann Intern Med 141(1):23–27

    CAS  PubMed  Google Scholar 

  • Yuan HD, Kim DY, Quan HY, Kim SJ, Jung MS, Chung SH (2012) Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3β via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chem Biol Interact 195(1):35–42

    CAS  PubMed  Google Scholar 

  • Yun TK (1997) Preventive effects of Panax ginseng CA Meyer on various human cancers. In: Ohigashi H, Osawa T, Terao J, Watanabe S, Yoshikawa T (eds) Food factors for cancer prevention. Springer, Tokyo, pp 240–244

    Google Scholar 

  • Yun TK, Lee YS, Lee YH, Kim SI, Yun HY (2001a) Anticarcinogenic effect of Panax ginseng CA Meyer and identification of active compounds. J Korean Med Sci 16(Suppl):S6–S18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yun YP, Do JH, Ko SR, Ryu SY, Kim JH, Song HC, Park YD, Ahn KS, Kim SH (2001b) Effects of Korean red ginseng and its mixed prescription on the high molecular weight dextran-induced blood stasis in rats and human platelet aggregation. J Ethnopharmacol 77:259–264

    CAS  PubMed  Google Scholar 

  • Zhan SY, Guo QJ, Shao Q, Fan XH, Li Z, Cheng YY (2014) A pharmacokinetic and pharmacodynamic study of drug–drug interaction between ginsenoside Rg1, ginsenoside Rb1 and schizandrin after intravenous administration to rats. J Ethnopharmacol 152(2):333–339

    CAS  PubMed  Google Scholar 

  • Zhang JS, Sigdestad CP, Gemmell MA, Grdina DJ (1987) Modification of radiation response in mice by fractionated extracts of Panax ginseng. Radiat Res 112(1):156–163

    CAS  PubMed  Google Scholar 

  • Zhang SL, Chen YJ, Cui CB, He GX, Xu SX, Pei YP, Yao XS, Zhu TR (1989a) A new minor saponin from the leaves of Panax ginseng C. A. Meyer. Yao Xue Xue Bao 24(11):877–879 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Zhang SL, Yao XS, Chen YJ, Cui CB, Tezuka Y, Kikuchi T (1989b) Ginsenoside La, a novel saponin from the leaves of Panax ginseng. Chem Pharm Bull 37(7):1966–1968

    CAS  Google Scholar 

  • Zhang DX, Yasuda T, Yu YY, Zheng PD, Kawabata T, Ma YX, Okada S (1996) Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic Biol Med 20(1):145–150

    CAS  PubMed  Google Scholar 

  • Zhang CZ, Yu HS, Bao YM, An LJ, Jin FX (2001) Purification and characterization of ginsenoside-β-glucosidase from ginseng. Chem Pharm Bull (Tokyo) 49(7):795–798

    CAS  Google Scholar 

  • Zhang HJ, Lu ZZ, Tan GT, Qiu SX, Farnsworth NR, Pezzuto JM, Fong HHS (2002) Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng. Tetrahedron Lett 43(6):973–977

    CAS  Google Scholar 

  • Zhang GZ, Liu AL, Zhou YB, San X, Jin TW, Jin Y (2008a) Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J Ethnopharmacol 115(3):441–448

    CAS  PubMed  Google Scholar 

  • Zhang QH, Wu CF, Duan L, Yang JY (2008b) Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells. Food Chem Toxicol 46(1):293–302

    PubMed  Google Scholar 

  • Zhang X, Yu L, Bi HT, Li XH, Ni WH, Han H, Li N, Wang BQ, Zhou YF, Tai GH (2009) Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr Polym 77:544–552

    CAS  Google Scholar 

  • Zhang X, Li SS, Sun L, Ji L, Zhu JJ, Fan YY, Tai GH, Zhou YF (2012) Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng. Carbohydr Polym 89(2):519–525

    CAS  PubMed  Google Scholar 

  • Zhang JK, Gao R, Dou DQ, Kang TG (2013a) The ginsenosides and carbohydrate profiles of ginseng cultivated under mountainous forest. Pharmacogn Mag 9:38–43

    CAS  Google Scholar 

  • Zhang XJ, Huang LL, Cai XJ, Li P, Wang YT, Wan JB (2013b) Fatty acid variability in three medicinal herbs of Panax species. Chem Cent J 7(1):1–8 (In Chinese)

    Google Scholar 

  • Zhao MQ, Ding JY, Liu J, Hu B (2001) Studies on the arbutin biosynthesis by hairy root of Panax ginseng C.A. Mayer. Zhongguo Zhong Yao Za Zhi 26(12):819–822 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Zhao JM, Li N, Zhang H, Wu CF, Piao HP, Zhao YQ (2011) Novel dammarane-type sapogenins from Panax ginseng berry and their biological activities. Bioorg Med Chem Lett 21(3):1027–1031

    CAS  PubMed  Google Scholar 

  • Zheng YN, Okuda H, Han LK, Xiang L, Matsuura Y, Takaku T, Kameda K (1998) A new amino acid derivative from red ginseng. J Chin Pharm Sci 7(1):7–10

    CAS  Google Scholar 

  • Zheng GQ, Cheng W, Wang Y, Wang XM, Zhao SZ, Zhou Y, Liu SJ, Wang XT (2011) Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol 133(2):724–728

    CAS  PubMed  Google Scholar 

  • Zhong JJ (1998) Production of ginseng saponin and polysaccharide by cell cultures of Panax notoginseng and Panax ginseng. Appl Biochem Biotechnol 75(2–3):261–268

    CAS  Google Scholar 

  • Zhong YM, Nishijo H, Uwano T, Tamura R, Kawanishi K, Ono T (2000) Red ginseng ameliorated place navigation deficits in young rats with hippocampal lesions and aged rats. Physiol Behav 69(4–5):511–525

    CAS  PubMed  Google Scholar 

  • Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH, Liu L (2011) Ginseng protects rodent hearts from acute myocardial ischemia–reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism. J Ethnopharmacol 135(2):287–298

    CAS  PubMed  Google Scholar 

  • Zhou Q, Jiang L, Xu CH, Luo DJ, Zeng CL, Liu P, Yue M, Liu YY, Hu XS, Hu H (2014) Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 133(1):57–65

    CAS  PubMed  Google Scholar 

  • Zhu GY, Li YW, Hau DK, Jiang ZH, Yu ZL, Fong WF (2011a) Acylated protopanaxadiol-type ginsenosides from the root of Panax ginseng. Chem Biodivers 8(10):1853–1863

    CAS  PubMed  Google Scholar 

  • Zhu GY, Li YW, Hau DK, Jiang ZH, Yu ZL, Fong WF (2011b) Protopanaxatriol-type ginsenosides from the root of Panax ginseng. J Agric Food Chem 59(1):200–205

    CAS  PubMed  Google Scholar 

  • Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X (2012) Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 202:342–351

    CAS  PubMed  Google Scholar 

  • Zou Y, Tao TZ, Tian Y, Zhu JL, Cao LJ, Deng XM, Li JB (2013) Ginsenoside Rg1 improves survival in a murine model of polymicrobial sepsis by suppressing the inflammatory response and apoptosis of lymphocytes. J Surg Res 183(2):760–766

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2015). Panax ginseng . In: Edible Medicinal and Non Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9511-1_16

Download citation

Publish with us

Policies and ethics