Skip to main content

Colocasia esculenta

  • Chapter
  • First Online:

Abstract

Colocasia esculenta (L.) Schott

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Selected References

  • Abbott IA (1992) La’au Hawai’i traditional Hawaiian uses of plants. Bishop Museum Press, Honolulu, 163 pp

    Google Scholar 

  • Abdel-Akher M, Youssef AM, Hegazi SM (1972) The structure of an arabinogalactan from Colocasia esculenta (taro). Pak J Sci Ind Res 15:363–364

    CAS  Google Scholar 

  • Aboubakar MF, Njintang YN, Scher J, Mbofung CMF (2008) Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J Food Eng 86:294–305

    CAS  Google Scholar 

  • Aboubakar MF, Njintang YN, Scher J, Mbofung CMF (2009) Texture, microstructure and physicochemical characteristics of taro (Colocasia esculenta) as influenced by cooking condition. J Food Eng 91(3):373–379

    CAS  Google Scholar 

  • Acevedo-Rodríguez P, Strong MT (2005) Monocots and gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, Washington DC. vol 52, 415 pp

    Google Scholar 

  • Adane T, Shimelis A, Negussie R, Tilahun B, Haki GD (2013) Effect of processing method on the proximate composition, mineral content and antinutritional factors of taro (Colocasia esculenta L.) grown in Ethiopia. Afr J Food Agric Nutr Dev 13(2):7383–7398

    CAS  Google Scholar 

  • Agama-Acevedo E, Garcia-Suarez FJ, Gutierrez-Meraz F, Sanchez-Rivera MM, San Martin E, Bello-Pérez LA (2011) Isolation and partial characterization of Mexican taro (Colocasia esculenta L.) starch. Starch-Starke 63:139–146

    CAS  Google Scholar 

  • Agbor‐Egbe T, Rickard JE (1990) Evaluation of the chemical composition of fresh and stored edible aroids. J Sci Food Agric 53(4):487–495

    Google Scholar 

  • Agwunobi LN, Angwukam PO, Cora OO, Isika MA (2002) Studies on the use of Colocasia esculenta (taro cocoyam) in the diets of weaned pigs. Trop Anim Health Prod 34(3):241–247

    CAS  PubMed  Google Scholar 

  • Alam F, Hasnain A (2009) Studies on swelling and solubility of modified starch from taro (Colocasia esculenta): effect of pH and temperature. Agric Conspec Sci 74(1):45–50

    Google Scholar 

  • Alcantara RM, Hurtada WA, Dizon EI (2013) The nutritional value and phytochemical components of taro [Colocasia esculenta (L.) Schott] powder and its selected processed foods. J Nutr Food Sci 3:207

    Google Scholar 

  • Ali M (1991) New dihydroxysterols from Colocasia esculenta tubers. Indian J Pharm Sci 53(3):98–100

    CAS  Google Scholar 

  • Amin ES (1955) The polysaccharides of Colocasia antiquorum (taro or colocass). J Chem Soc 1955:2442–2445

    Google Scholar 

  • Amon AS, Soro RY, Assemand EF, Dué EA, Kouamé LP (2014) Effect of boiling time on chemical composition and physico-functional properties of flours from taro (Colocasia esculenta cv fouê) corm grown in Côte d’Ivoire. J Food Sci Technol 51(5):855–864

    CAS  PubMed  Google Scholar 

  • Antonio-Estrada C, Bello-Pérez LA, Martínez-Sánchez CE, Montañez-Soto JL, Jiménez-Hernández J, Vivar-Vera MA (2009) Enzymatic production of maltodextrins from taro (Colocasia esculenta) starch. J Food 7(3):233–241

    CAS  Google Scholar 

  • Bailey LM (1925) Manual of cultivated plants. Macmillan, London, pp 135–136

    Google Scholar 

  • Barrau J (1957) Les Aracées du tubercules alimentaires des Iles du Pacifique. Sud J Agric Trop Bot Appl 4:34–52

    Google Scholar 

  • Bezerra IC, Castro LA, Neshich G, de Almeida ER, de Sá MF, Mello LV, Monte-Neshich DC (1995) A corm-specific gene encodes tarin, a major globulin of taro (Colocasia esculenta L. Schott). Plant Mol Biol 28(1):137–144

    CAS  PubMed  Google Scholar 

  • Biren NS, Nayak BS, Bhatt SP, Jalalpure SS, Seth AK (2007) The anti-inflammatory activity of the leaves of Colocasia esculenta. Saudi Pharm J 15(3–4):228–232

    CAS  Google Scholar 

  • Boban PT, Nambisan B, Sudhakaran PR (2006) Hypolipidaemic effect of chemically different mucilages in rats: a comparative study. Br J Nutr 96(6):1021–1029

    CAS  PubMed  Google Scholar 

  • Boudjeko T, Andème-Onzighi C, Vicré M, Balangé AP, Ndoumou DO, Driouich A (2006) Loss of pectin is an early event during infection of cocoyam roots by Pythium myriotylum. Planta 223(2):271–282

    CAS  PubMed  Google Scholar 

  • Brown AC, Valiere A (2004) The medicinal uses of poi. Nutr Clin Care 7(2):69–74

    PubMed Central  PubMed  Google Scholar 

  • Brown AC, Reitzenstein JE, Liu J, Jadus MR (2005) The anti-cancer effects of poi (Colocasia esculenta) on colonic adenocarcinoma cells in vitro. Phytother Res 19(9):767–771

    PubMed  Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Revised reprint of 1st ed 1935, 2 vols. Ministry of Agriculture and Co-operatives, Kuala Lumpur, Malaysia, vol 1 (A–H), pp 1–1240, vol 2 (I–Z), pp 1241–2444

    Google Scholar 

  • Caesar K (1980) Growth and development of Xanthosoma and Colocasia under different light and water supply conditions. Field Crop Res 3:235–244

    Google Scholar 

  • Carneiro M, Rodrigues CA, De Castro LAB, Da Silva MC, Coutinho MV (1990) Isolation characterization of the major albumin from Colocasia esculenta corms. Plant Sci 67(1):39–46

    CAS  Google Scholar 

  • Carpenter JR, Steinke WE (1983) Animal feed. In: Wang JK, Higa S (eds) Taro, a review of Colocasia esculenta and its potential. University of Hawaii Press, Honolulu, pp 269–300, 400 pp

    Google Scholar 

  • Catherwood DJ, Savage GP, Mason SM, Scheffer JJC, Ouglas JA (2007) Oxalate content of cormels of Japanese taro (Colocasia esculenta (L.) Schott) and the effect of cooking. J Food Comp Anal 20(3–4):147–151

    CAS  Google Scholar 

  • Champagne A, Bernillon S, Moing A, Rolin D, Legendre L, Lebot V (2010) Carotenoid profiling of tropical root crop chemotypes from Vanuatu, South Pacific. J Food Comp Anal 23(8):763–771

    CAS  Google Scholar 

  • Champagne A, Hilbert G, Legendre L, Lebot V (2011) Diversity of anthocyanins and other phenolic compounds among tropical root crops from Vanuatu, south Pacific. J Food Comp Anal 24(3):315–325

    CAS  Google Scholar 

  • Champagne A, Legendre L, Lebot V (2013) Biofortification of taro (Colocasia esculenta) through breeding for increased contents in carotenoids and anthocyanins. Euphytica 194(1):125–136

    CAS  Google Scholar 

  • Chan YS, Wong JH, Ng TB (2010) A cytokine-inducing hemagglutinin from small taros. Protein Pept Lett 17(7):823–830

    CAS  PubMed  Google Scholar 

  • Chern MK, Li HY, Chen PF, Chien SF (2012) Taro α-galactosidase: a new gene product for blood conversion. Biocatal Agric Biotechnol 1(2):135–139

    CAS  Google Scholar 

  • Chibueze N (2014) Changes in the activity of ascorbate peroxidase under anaerobiosis in cocoyam (Colocasia esculenta). Pak J Biol Sci 17(1):138–140

    CAS  PubMed  Google Scholar 

  • Chien SF, Lin-Chu M (1991) The conversion of group B red blood cells into group O by an alpha-D-galactosidase from taro (Colocasia esculenta). Carbohydr Res 217:191–200

    CAS  PubMed  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1986) Glossary of Indian medicinal plants. (Including the supplement). Council Scientific Industrial Research, New Delhi, 330 pp

    Google Scholar 

  • Coursey DG (1968) The edible aroids. World Crops 20(3):25–30

    Google Scholar 

  • Derstine V, Rada EL (1952) Some dietetic factors influencing the market for poi in Hawaii, with emphasis on a survey of the use of poi by the medical profession and allied institutions. Agric Econ Bull AEB-3. University of Hawaii, Honolulu, 45 pp

    Google Scholar 

  • Du TH, Vanhanen L, Savage G (2013) Effect of simple processing methods on oxalate content of taro petioles and leaves grown in central Viet Nam. LWT Food Sci Technol 50(1):259–263

    Google Scholar 

  • Duangmal K, Apenten RKO (1999) A comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chem 64(3):351–359

    CAS  Google Scholar 

  • Ejoh AR, Mbiapo FT, Fokou E (1996) Nutrient composition of the leaves and flowers of Colocasia esculenta and the fruits of Solanum melongena. Plant Foods Hum Nutr 49(2):107–112

    CAS  PubMed  Google Scholar 

  • Eleazu CO, Iroaganachi M, Eleazu KC (2013) Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) on the relative tissue weights of streptozotocin-induced diabetic rats. J Diabetes Res 2013:160964

    Google Scholar 

  • Emmanuel CAI, Osuchukwu NC, Oshiele L (2010) Functional and sensory properties of wheat (Aestium triticum) and taro flour (Colocasia esculenta) composite bread. Afr J Food Sci 4(5):248–253

    Google Scholar 

  • Enechi OC, Odo CE, Oburu S (2014) Concentrations of anti-nutritional factors in raw edible cocoyam (Colocasia esculenta) leaves. J Pharm Res 8(1):38–40

    Google Scholar 

  • Falade KO, Okafor CA (2013) Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches. Food Hydrocoll 30(1):173–181

    CAS  Google Scholar 

  • Ferguson LR, Roberton AM, McKenzie RJ, Watson ME, Harris PJ (1992) Adsorption of a hydrophobic mutagen to dietary fiber from taro (Colocasia esculenta), an important food plant of the South Pacific. Nutr Cancer 17(1):85–95

    CAS  PubMed  Google Scholar 

  • Ferreres F, Gonçalves RF, Gil-Izquierdo A, Valentão P, Silva AM, Silva JB, Santos D, Andrade PB (2012) Further knowledge on the phenolic profile of Colocasia esculenta (L.) Shott. J Agric Food Chem 60(28):7005–7015

    CAS  PubMed  Google Scholar 

  • Gaind KN, Chopra KS, Dua AC (1968) Studies of mucilages of corm and tuber of Colocasia esculenta Linn. (i) Emulsifying properties. Indian J Pharmacol 31:208–211

    Google Scholar 

  • Gaind KN, Chopra KS, Dua AC (1969) Studies of mucilages of corm and tuber of Colocasia esculenta Linn. (ii) Binding properties. Indian J Pharmacol 31:156–158

    CAS  Google Scholar 

  • Gaosong J, Ramsden L, Corke H (1997) Effect of water-soluble non-starch polysaccharides from taro on pasting properties of starch. Starch-Starke 49:259–261

    Google Scholar 

  • Ghan HT Jr, Kalo-Jao THC, Nakayama TOM (1977) Anthocyanin composition of taro. J Food Sci 42:19–21

    Google Scholar 

  • Glaser J, Lawrence RA, Harrison A, Ball MR (1967) Poi – its use as a food for normal, allergic and potentially allergic children. Ann Allergy 25:496–500

    CAS  PubMed  Google Scholar 

  • Godoy CV, Tulin EE, Quevedo ES (1992) Physicochemical properties of raw and blanched taro flours. J Food Process Preserv 16:239–252

    CAS  Google Scholar 

  • Gonçalves RF, Silva AM, Silva AM, Valentão P, Ferreres F, Gil-Izquierdo A, Silva JB, Santos D, Andrade PB (2013) Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties. Food Chem 141(4):3480–3485

    PubMed  Google Scholar 

  • Gonzalez-Soto RA, de la Vega B, García-Suarez FJ, Agama-Acevedo E, Bello-Pérez LA (2011) Preparation of spherical aggregates of taro starch granules. LWT Food Sci Technol 44(10):2064–2069

    CAS  Google Scholar 

  • Govaerts R (2014) World checklist of Araceae. Royal Botanic Gardens, Kew, London. http://apps.kew.org/wcsp/

  • Greenwell ABH (1947) Taro with special reference to its culture and uses in Hawaii. Econ Bot 1:276–289

    Google Scholar 

  • Griffin GJL, Wang JK (1983) Industrial uses. In: Wang J, Higa S (eds) Taro, a review of Colocasia esculenta and its potentials. Univ Hawaii Press, Honolulu, pp 301–312, 400 pp

    Google Scholar 

  • Grindley BA, Omoruyi F, Asemota HN, Morrisona A (2002) Carbohydrate digestion and intestinal ATPases in streptozotocin-induced diabetic rats fed extract of yam (Dioscorea cayenensis) or dasheen (Colocasia esculenta). Nutr Res 22(3):333–341

    CAS  Google Scholar 

  • Gubag R, Omoloso DA, Owens JD (1996) Sapal: a traditional fermented taro [Colocasia esculenta (L.) Schott] corm and coconut cream mixture from Papua New Guinea. Int J Food Microbiol 28(3):361–367

    CAS  PubMed  Google Scholar 

  • Hammer BC, Shaw DC, Bradbury JH (1989) Trypsin inhibitors from Colocasia esculenta, Alocasia macrorrhiza and Cyrtosperma chamissonis. Phytochemistry 28(11):3019–3026

    CAS  Google Scholar 

  • Haudricourt A (1941) Les Colocasiées alimentaires (taros et yautias). Rev Bot Appl Agric Trop 21:40–65

    Google Scholar 

  • Hill AF (1939) The nomenclature of the taro and its varieties. Bot Mu Leaflet Harv Univ 9:113–118

    Google Scholar 

  • Hirai M, Sato T, Takayangi K (1989) Classification of Japanese cultivars of taro (Colocasia esculenta (L.) Schott) based on electrophoretic pattern of the tuber proteins and morphological characters. Jpn J Breed 39:307–317

    CAS  Google Scholar 

  • Hirai M, Nakamura K, Imai T, Sato T (1993) cDNAs encoding for storage proteins in the tubers of taro (Colocasia esculenta Schott). Jpn J Genet 68(3):229–236

    CAS  PubMed  Google Scholar 

  • Hollyer J, Paul R, Huang A (2000) Processing taro chips. Coperative Extension Service, FMT-1. College of Tropical Agriculture and Human Resources. University of Hawai at Mānoa, Honolulu

    Google Scholar 

  • Hong GP, Nip WK (1990) Functional properties of precooked taro flour in sorbets. Food Chem 36:261–270

    CAS  Google Scholar 

  • Hu SY (2005) Food plants of China. The Chinese University Press, Hong Kong, 844 pp

    Google Scholar 

  • Huang A, Tanudjaja L (1992) Application of anion-exchange high-performance liquid chromatography in determining oxalates in taro. J Agric Food Chem 40(11):2123–2126

    CAS  Google Scholar 

  • Huang CC, Chen WC, Wang CC (2007) Comparison of Taiwan paddy-and upland-cultivated taro (Colocasia esculenta L.) cultivars for nutritive values. Food Chem 102(1):250–256

    CAS  Google Scholar 

  • Huang CC, Lai P, Hua Chen I, Liu YF, Wang CC (2010) Effects of mucilage on the thermal and pasting properties of yam, taro, and sweet potato starches. LWT Food Sci Technol 43(6):849–855

    CAS  Google Scholar 

  • Ibrahim MNM, Raveendranath S, Balasubramaniam S (1983) Studies on root and tuber crops grown in association with coconut 1. Survey on root and tuber crops found under coconut and the morphological characterization of edible aroids. Cocos 1:17–30

    Google Scholar 

  • Iwashina T, Konishi T, Takayama A, Fukuda M, Ootani S (1999) Isolation and identification of the flavonoids in the leaves of taro. Ann Tsukuba Bot Gard 18:71–74

    Google Scholar 

  • Iwuoha CI, Kalu FA (1995) Calcium oxalate and physico-chemical properties of cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) tuber flours as affected by processing. Food Chem 54(1):61–66

    CAS  Google Scholar 

  • Jane J, Shen L, Lim S, Kasemsuwan T, Nip WK (1992) Physical and chemical studies of taro starches and flours. Cereal Chem 69:528–535

    CAS  Google Scholar 

  • Jiang G, Ramsden L (1999) Characterisation and yield of the arabinogalactan-protein mucilage of taro corms. J Sci Food Agric 79:671–674

    CAS  Google Scholar 

  • Jomjun N, Siripen T, Maliwan S, Jintapat N, Prasak T, Somporn C, Petch P (2011) Phytoremediation of arsenic in submerged soil by wetland plants. Int J Phytoremediation 13(1):35–46

    CAS  PubMed  Google Scholar 

  • Jonker-Verhoef AME, Jonker FP (1959) Notes on the Araceae of Suriname. II. Acta Bot Neerlandica 8:139–155

    Google Scholar 

  • Kai H, Akamatsu E, Torii E, Kodama H, Yukizaki C, Sakakibara Y, Suiko M, Morishita K, Kataoka H, Matsuno K (2011) Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (ATL)-related cell lines. J Nat Med 65(3–4):651–655

    PubMed  Google Scholar 

  • Kalariya M, Parmar S, Sheth N (2010) Neuropharmacological activity of hydroalcoholic extract of leaves of Colocasia esculenta. Pharm Biol 48(11):1207–1211

    PubMed  Google Scholar 

  • Kaur M, Kaushal P, Sandhu KS (2013) Studies on physicochemical and pasting properties of taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. J Food Sci Technol 50(1):94–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaushal P, Sharma HK (2013) Convective dehydration kinetics of noodles prepared from taro (Colocasia esculenta), rice (Oryza sativa) and pigeonpea (Cajanus cajan) flours. Agric Eng Int CIGR J 15(4):202–212

    Google Scholar 

  • Kaushal P, Kumar V, Sharma HK (2012) Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT Food Sci Technol 48(1):59–68

    CAS  Google Scholar 

  • Kaushal P, Kumar V, Sharma HK (2013) Utilization of taro (Colocasia esculenta): a review. J Food Sci Technol. doi:10.1007/s13197-013-0933-y

    Google Scholar 

  • Kim KH, Moon E, Kim SY, Lee KR (2010a) Antimelanogenic fatty acid derivatives from the tuber-barks of Colocasia antiquorum var. esculenta. Bull Korean Chem Soc 31(7):2051–2053

    CAS  Google Scholar 

  • Kim KH, Moon E, Kim SY, Lee KR (2010b) Lignans from the tuber-barks of Colocasia antiquorum var. esculenta and their antimelanogenic activity. J Agric Food Chem 58(8):4779–4785

    CAS  PubMed  Google Scholar 

  • Kim YO, Jung S, Kim K, Bae HJ (2013) Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress. Plant Physiol Biochem 64:25–32

    CAS  PubMed  Google Scholar 

  • Kiran KS, Padmaja G (2003) Inactivation of trypsin inhibitors in sweet potato and taro tubers during processing. Plant Foods Hum Nutr 58(2):153–163

    PubMed  Google Scholar 

  • Kirtikar KR, Basu BD (1975) Indian medicinal plants, 4 vols, 2nd edn. Jayyed Press, New Delhi

    Google Scholar 

  • Kobayashi NI, Tanoi K, Hirose A, Saito T, Noda A, Iwata N, Nakano A, Nakamura S, Nakanishi TM (2011) Analysis of the mineral composition of taro for determination of geographic origin. J Agric Food Chem 59(9):4412–4417

    CAS  PubMed  Google Scholar 

  • Kubde MS, Khadabadi SS, Farooqui IA, Deore SL (2010) In-vitro anthelmintic activity of Colocasia esculenta. Der Pharm Lett 2(2):82–85

    Google Scholar 

  • Kumari B, Sharma P, Nath AK (2012) α-Amylase inhibitor in local Himalyan collections of Colocasia: isolation, purification, characterization and selectivity towards α-amylases from various sources. Pestic Biochem Physiol 103(1):49–55

    CAS  Google Scholar 

  • Kumawat NS, Chaudhari SP, Wani NS, Deshmukh TA, Patil VR (2010) Antidiabetic activity of ethanol extract of Colocasia esculenta leaves in alloxan induced diabetic rats. Int J PharmTech Res 2(2):1246–1249

    Google Scholar 

  • Kundu N, Campbell P, Hampton B, Lin CY, Ma X, Ambulos N, Zhao XF, Goloubeva O, Holt D, Fulton AM (2012) Antimetastatic activity isolated from Colocasia esculenta (taro). Anticancer Drugs 23(2):200–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurien J, Ramasamy EV (2006) Vermicomposting of Taro (Colocasia esculenta) with two epigeic earthworm species. Bioresour Technol 97(11):1324–1328

    CAS  PubMed  Google Scholar 

  • Lai HM, Jeng ST, Lii CY (1998) 17O NMR and DSC for studying quality of taro paste as affected by processing and storage. LWT Food Sci Technol 31(1):57–63

    CAS  Google Scholar 

  • Lako J, Trenerry VC, Wahlqvist M, Wattanepenpaiboon N, Sotheeswaran S, Premier R (2007) Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem 101:1727–1741

    CAS  Google Scholar 

  • Lambert M (1982) Taro cultivation in the south Pacific. South Pacific Commission, Noumea

    Google Scholar 

  • Langeland KA, Cherry HM, McCormick CM, Craddock Burks KA (2008) Identification and biology of non-native plants in Florida’s natural areas. University of Florida IFAS Extension, Gainesville

    Google Scholar 

  • Lebot V, Aradhya KM (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 56(1):55–66

    Google Scholar 

  • Lebot V, Malapa R, Bourrieau M (2011) Rapid estimation of taro (Colocasia esculenta) quality by near-infrared reflectance spectroscopy. J Agric Food Chem 59(17):9327–9334

    Google Scholar 

  • Lebot V, Prana MS, Kreike N, van Heck H, Pardales J, Okpul T, Gendua T, Thongjiem M, Hue H, Viet N, Yap TC (2004) Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genet Resour Crop Evol 51:381–392

    CAS  Google Scholar 

  • Lee SW, Najiah M, Wee W (2004) In vitro antimicrobial activities of Colocasia esculenta extract against Vibrio spp. – short communication. Agric Sci J Issue 1:5–11

    Google Scholar 

  • Lee SW, Wee W, Yong JFS, Syamsumir DF (2011) Antimicrobial, antioxidant, anticancer property and chemical composition of different parts (corm, stem and leave) of Colocasia esculenta extract. Ann Univ Mariae Curie-Sklodowska Pharm 24(3):9–16

    Google Scholar 

  • Leong ACN, Kinjo Y, Tako M, Iwasaki H, Oku H, Tamaki H (2010) Flavonoid glycosides in the shoot system of Okinawa taumu (Colocasia esculenta S.). Food Chem 119:630–635

    CAS  Google Scholar 

  • Lewu MN, Adebola PO, Afolayan AJ (2009) Effect of cooking on the proximate composition of seven accessions of Colocasia esculenta (L.) Schott tubers growing in South Africa. Int J Food Sci Nutr 60(4):81–86

    CAS  PubMed  Google Scholar 

  • Lewu MN, Yakubu MT, Adebola PO, Afolayan AJ (2010) Effect of accessions of Colocasia esculenta-based diets on the hepatic and renal functional indices of weanling Wistar rats. J Med Food 13(5):1210–1215

    CAS  PubMed  Google Scholar 

  • Lewu MN, Yakubu TM, Adebola PO, Afolayan AJ (2011) Growth performance of weanling Wistar rats fed on accessions of cooked Colocasia esculenta-based diets. J Med Food 14(9):1046–1051

    CAS  PubMed  Google Scholar 

  • Li H, Boyce PC Colocasia. FOC 32

    Google Scholar 

  • Lin H, Huang AS (1993) Chemical composition and some physical properties of a water-soluble gum in taro (Colocasia esculenta). Food Chem 48:403–409

    CAS  Google Scholar 

  • Lin DG, Jeang CL (2005a) cDNA cloning, expression, and characterization of Taro SSII: a novel member of starch synthase II family. J Agric Food Chem 53(20):7958–7964

    CAS  PubMed  Google Scholar 

  • Lin DG, Jeang CL (2005b) Cloning, expression, and characterization of soluble starch synthase I cDNA from taro (Colocasia esculenta var. esculenta). J Agric Food Chem 53(20):7985–7990

    CAS  PubMed  Google Scholar 

  • Lin MH, Wu MC, Lu S, Lin J (2010) Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World J Gastroenterol 16(39):4973–4979

    PubMed Central  PubMed  Google Scholar 

  • Lu TJ, Lin JH, Chen JC, Chang YH (2008) Characteristics of taro (Colocasia esculenta) starches planted in different seasons and their relations to the molecular structure of starch. J Agric Food Chem 56(6):2208–2215

    CAS  PubMed  Google Scholar 

  • Ma Z, Miyasaka SC (1998) Oxalate exudation by taro in response to Al. Plant Physiol 118(3):861–865

    PubMed Central  PubMed  Google Scholar 

  • MacLeod G (1990) Combined gas chromatography-mass spectrometric analysis of the aroma components of cooked taro (Colocasia esculenta L.). Food Chem 38(2):89–96

    CAS  Google Scholar 

  • Masui H, Kondo T, Kojima M (1989) An antifungal compound 9,12,13-trihydroxy-(E)-10-octadecenoic acid, from Colocasia antiquorum inoculated with Ceratocystis fimbriata. Phytochemistry 28(10):2613–2615

    CAS  Google Scholar 

  • Matthews PJ, Naing KW (2005) Notes on the provenance and providence of wildtype taros (Colocasia esculenta) in Myanmar. Bull Nat Mus Ethnol 29(4):587–615

    Google Scholar 

  • Mbofung CMF, Aboubakar MF, Njintang YN, Bouba AA, Balaam F (2006) Physiochemical and functional properties of six varieties of taro (Colocasia esculenta L. Schott) flour. J Food Technol 4(2):135–142

    CAS  Google Scholar 

  • McEwan R, Madivha RP, Djarova T, Oyedeji OA, Opoku AR (2010) Alpha-amylase inhibitor of amadumbe (Colocasia esculenta): isolation, purification and selectivity toward α-amylases from various sources. Afr J Biochem Res 4(9):220–224

    CAS  Google Scholar 

  • Mihailidou H, Galanakis E, Paspalaki P, Borgia P, Mantzouranis E (2002) Pica and the elephant’s ear. J Child Neurol 17(11):855–856

    PubMed  Google Scholar 

  • Monte-Neshich DC, Rocha TL, Guimarães RL, Santana EF, Loureiro ME, Valle M, de Sá MFG (1995) Characterization and spatial localization of the major globulin families of taro (Colocasia esculenta L. Schott) tubers. Plant Sci 112(2):149–159

    CAS  Google Scholar 

  • Moorthy SN, Pillai PKT, Unnikrishnan M (1992) 1992 Variability in starch extracted from taro. Carbohydr Polym 20(3):169–173

    Google Scholar 

  • Moy JH, Nip WK (1983) Processed food. In: Wang JK, Higa S (eds) Taro, a review of Colocasia esculenta and its potentials. University of Hawaii Press, Honolulu, pp 261–268, 400 pp

    Google Scholar 

  • Moy JH, Shadbolt B, Stoewsand GS, Nakayama TOM (1979) The acridity factor in taro processing. J Food Process 3:139–144

    CAS  Google Scholar 

  • Moy JH, Nip WK, Lai AO, Tsai WYJ, Nakayama TOM (1980) Development of extruded taro products. J Food Sci 45(3):652–656

    Google Scholar 

  • Murai M, Pen F, Miller CD (1958) Some tropical South Pacific Island foods. Description, history, use, composition, and nutritive value. University of Hawaii Press, Honolulu

    Google Scholar 

  • Mweta DE, Labuschagne MT, Bonnet S, Swarts J, Saka JD (2010) Isolation and physicochemical characterisation of starch from cocoyam (Colocasia esculenta) grown in Malawi. J Sci Food Agric 90(11):1886–1896

    CAS  PubMed  Google Scholar 

  • Nadkarni KM (2001) Indian plants and drugs with their medical properties and uses. Asiatic publishing House, Delhi

    Google Scholar 

  • Ndabikunze BK, Talwana HAL, Mongi RJ, Issa-Zacharia A, Serem AK, Palapala V, Nandi JOM (2011) Proximate and mineral composition of cocoyam (Colocasia esculenta L. and Xanthosoma sagittifolium L.) grown along the Lake Victoria Basin in Tanzania and Uganda. Afr J Food Sci 5(4):248–254

    CAS  Google Scholar 

  • Nip WK (1979a) Development and storability of drum-dried guava- and papaya-taro flakes. J Food Sci 44:222–225

    CAS  Google Scholar 

  • Nip WK (1979b) Drum-dried pineapple-taro and mango taro flakes. In: Plucknett DL (ed) Small scale processing and storage of tropical root crops, Tropical agriculture series no. 1. Westview Press, Boulder, pp 266–274, 461 pp

    Google Scholar 

  • Nip WK (1980) Taro food products, Taro food products. Research extension series 001. Hawaii Institute of Tropical Agriculture and Human Resources, Honolulu

    Google Scholar 

  • Nip WK, Muchille J, Tsai T, Moy JH (1989) Nutritive and non-nutritive constituents in taro [Colocasia esculenta (L.) Schott]. J Haw Pac Agric 2:1–5

    Google Scholar 

  • Nip WK, Whitaker CS, Vargo D (1994) Application of taro flour in cookie formulations. Int J Food Sci Technol 29:463–468

    CAS  Google Scholar 

  • Njintang YN, Mbofung CMF (2003) Development of taro (Colocasia esculenta (L.) Schott) flour as an ingredient for food processing: effect of gelatinisation and drying temperature on the dehydration kinetics and colour of flour. J Food Eng 58(3):259–265

    Google Scholar 

  • Njintang YN, Mbofung CMF (2006) Effect of precooking time and drying temperature on the physico-chemical characteristics and in-vitro carbohydrate digestibility of taro flour. LWT Food Sci Technol 39(6):684–691

    CAS  Google Scholar 

  • Njintang NY, Parker ML, Moates GK, Mbofung CM, Smith AC, Waldron KW (2006) Rheology and microstructure of achu, a food based on taro (Colocasia esculenta L. Schott), as affected by method of preparation. J Sci Food Agric 86:902–907

    CAS  Google Scholar 

  • Njintang YN, Mbofung CMF, Moates GK, Parker ML, Craig F, Smith AC, Waldron WK (2007) Functional properties of five varieties of taro flour, and relationship to creep recovery and sensory characteristics of achu (taro based paste). J Food Eng 82(2):114–120

    Google Scholar 

  • Njintang YN, Parker LM, Moates KG, Faulds BC, Smith CA, Waldron WK, Mbofung CMF, Scher J (2008) Microstructure and creep-recovery characteristics of achu (a taro based paste) made from freeze dried taro chips as affected by moisture content and variety. J Food Eng 87:172–180

    Google Scholar 

  • Njintang NY, Boudjeko T, Tatsadjieu LN, Nguema-Ona E, Scher J, Mbofung CM (2014) Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms. J Food Sci Technol 51(5):900–907

    CAS  PubMed  Google Scholar 

  • Njoku PC, Ohia CC (2007) Spectrophometric estimation studies of mineral nutrient in three cocoyam cultivars. Pak J Nutr 6(6):616–619

    Google Scholar 

  • Nyman LP, Arditti J, Bradley TJ (1989) Organic and inorganic constituents of salt tolerant taro (Colocasia esculenta var antiquorum) tissues cultured in saline media. Environ Exp Bot 29(4):423–432

    CAS  Google Scholar 

  • Ochse JJ, Bakhuizen van den Brink RC (1980) Vegetables of the Dutch Indies, 3rd edn. Ascher & Co., Amsterdam, 1016 pp

    Google Scholar 

  • Oke MO, Bolarinwa IF (2012) Effect of fermentation on physicochemical properties and oxalate content of cocoyam (Colocasia esculenta) flour. Agronomy 2012:Article 978709

    Google Scholar 

  • Olajide R, Akinsoyinu AO, Babayemi OJ, Omojola AB, Abu AO, Afolabi KD (2011) Effect of processing on energy values, nutrient and anti-nutrient components of wild cocoyam [Colocasia esculenta (L.) Schott] corm. Pak J Nutr 10(1):29–34

    CAS  Google Scholar 

  • Onwueme IC (1994) Tropical root and tuber crops – production, perspectives and future prospects. FAO plant production and protection paper 126. FAO, Rome, p 228

    Google Scholar 

  • Onwueme IC (1999) Taro cultivation in Asia and the Pacific. FAO Regional Office for Asia and The Pacific, Bangkok

    Google Scholar 

  • Orchard AE (2006) Infra-specific variation in Colocasia esculenta (L.) Schott (Araceae). Aust Syst Bot Soc Newsl 129:2–5

    Google Scholar 

  • Osagie AU (1977) Phytosterols in some tropical tubers. J Agric Food Chem 25:1222–1223

    CAS  PubMed  Google Scholar 

  • Oscarsson KV, Savage GP (2007) Composition and availability of soluble and insoluble oxalates in raw and cooked taro (Colocasia esculenta var. Schott) leaves. Food Chem 101(2):559–562

    CAS  Google Scholar 

  • Pacific Island Ecosystes at Risk (PIER) (2004) Colocasia esculenta (L.) Shott, Araceae. http://www.hear.org/pier/species/colocasia_esculenta.htm

  • Pandey YR, Rijal DK, Sthapit B (2000) Diveristy of taro and on-farm conservation through use in Nepal. In: Zhu D, Eyzaguirre PB, Zhou M, Sears L, Liu G (eds) Proc symposium of ethnobotanical and genetic study of Taro in China: approaches for the conservation and use of Taro genetic resources, 10–12 November 1998, Laiyang Agricultural College, Laiyang, Shangdong, China. International Plant Genetic Resources Institute, Rome, pp 18–25

    Google Scholar 

  • Park HR, Lee HS, Cho SY, Kim YS, Shin KS (2013) Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int J Mol Med 31(2):361–368

    CAS  PubMed  Google Scholar 

  • Parkison S (1984) The contribution of aroids in the nutrition of people in the South Pacific. In: Chandra S (ed) Edible aroids. Clarendon, Oxford, pp 215–224

    Google Scholar 

  • Patel MJ, Parmar P, Dave B, Subramanian RB (2012) Antioxidative and physiological studies on Colocasia esculentum in response to arsenic stress. Afr J Biotechnol 11(96):16241–16246

    CAS  Google Scholar 

  • Patil BR, Ageely HM (2011a) Antihepatotoxic activity of Colocasia esculenta leaf juice. Int J Adv Biotechnol Res 2(2):296–304

    Google Scholar 

  • Patil BR, Ageely HM (2011b) Anti-lipid peroxidative activity of Colocasia esculenta leaf juice against CCL4 and acetaminophen mediated cell damage. Int J Pharm Appl 2(3):141–149

    Google Scholar 

  • Pereira PR, Del Aguila EM, Verícimo MA, Zingali RB, Paschoalin VM, Silva JT (2014) Purification and characterization of the lectin from taro (Colocasia esculenta) and its effect on mouse splenocyte proliferation in vitro and in vivo. Protein J 33(1):92–99

    CAS  PubMed  Google Scholar 

  • Pérez E, Schultz FS, de Delahaye EP (2005) Characterization of some properties of starches isolated from Xanthosoma sagittifolium (tannia) and Colocassia esculenta (taro). Carbohydr Polym 60(2):139–145

    Google Scholar 

  • Pérez EE, Gutiérrez ME, De Delahaye EP, Tovar J, Lares M (2007) Production and characterization of Xanthosoma sagittifolium and Colocasia esculenta flours. J Food Sci 72(6):S367–S372

    PubMed  Google Scholar 

  • Phillippy BQ, Bland JM, Evens TJ (2003) Ion chromatography of phytate in roots and tubers. J Agric Food Chem 51(2):350–353

    CAS  PubMed  Google Scholar 

  • Plucknett DL (1970) Status and future of the major edible aroids, Colocasia, Xanthosoma, Alocasia, Cyrtosperma and Amorphophallus. In: Tropical root and tuber crops tomorrow: Proceedings of the 2nd international symposium on tropical root and tuber crops (Hawaii 1970) (Plucknett DL ed.), vol 1, pp 127–135. Honolulu College of Tropical Agriculture, University of Hawaii, 171 pp. (2 vols)

    Google Scholar 

  • Plucknett DL (1983) Taxonomy of the genus Colocasia. In: Wang JK, Higa S (eds) Taro, a review of Colocasia esculenta and its potential. University of Hawaii Press, Honolulu, pp 14–19, 400 pp

    Google Scholar 

  • Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N (2011) Colocasia esculenta: a potent indigenous plant. Int J Nutr Pharmacol Neurol Dis 1(2):90–96

    CAS  Google Scholar 

  • Prathibha S, Nambisan B, Leelamma S (1995) Enzyme inhibitors in tuber crops and their thermal stability. Plant Foods Hum Nutr 48(3):247–257

    CAS  PubMed  Google Scholar 

  • Purseglove JW (1972) Colocasia Schott. Tropical crops: monocotyledons 1. Longman Group Ltd., London, pp 61–69, 334 pp

    Google Scholar 

  • Ramdath DD, Isaacs RL, Teelucksingh S, Wolever TM (2004) Glycaemic index of selected staples commonly eaten in the Caribbean and the effects of boiling v. crushing. Br J Nutr 91(6):971–977

    CAS  PubMed  Google Scholar 

  • Rao KK (1969) Isolation and characterization of taro ferredoxin. Phytochemistry 8(8):1379–1386

    CAS  Google Scholar 

  • Rao KK, Matsubara H (1970) The amino acid sequence of taro ferredoxin. Biochem Biophys Commun 38(3):500–506

    CAS  Google Scholar 

  • Rekha MR, Padmaja G (2002) Alpha-amylase inhibitor changes during processing of sweet potato and taro tubers. Plant Foods Hum Nutr 57(3–4):285–294

    CAS  PubMed  Google Scholar 

  • Rodríguez-Miranda J, Ruiz-López II, Herman-Lara E, Martínez-Sánchez CE, Delgado-Licon E, Vivar-Vera MA (2011) Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT Food Sci Technol 44(3):673–680

    Google Scholar 

  • Roy A, Gupta S, Hess D, Das KP, Das S (2014) Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential. Proteomics 14(13–14):1646–1659

    Google Scholar 

  • Safo-Kantaka O (2004) Colocasia esculenta (L.) Schott. [Internet] Record from protabase. In: Grubben GJH, Denton OA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen. http://database.prota.org/search.htm

  • Sakai H, Kamide K, Morigasaki S, Sanada Y, Wada K, Ihara M (1994) Amino acid sequences of ferredoxin isoproteins from Japanese taro (Colocasia esculenta Schott). J Plant Res 107(3):299–305

    Google Scholar 

  • Sakano Y, Mutsuga M, Tanaka R, Suganuma H, Inakuma T, Toyoda M, Goda Y, Shibuya M, Ebizuka Y (2005) Inhibition of human lanosterol synthase by the constituents of Colocasia esculenta (taro). Biol Pharm Bull 28(2):299–304

    CAS  PubMed  Google Scholar 

  • Samarasinghe K, Rajaguru ASB (1992) Raw and processed wild colocasia corm meal (Colocasia esculenta (L.) Schott, var. esculenta) as an energy source for broilers. Anim Feed Sci Technol 36(1–2):143–151

    Google Scholar 

  • Sarkar G, Saha NR, Roy I, Bhattacharyya A, Bose M, Mishra R, Rana D, Bhattacharjee D, Chattopadhyay D (2014) Taro corms mucilage/HPMC based transdermal patch: an efficient device for delivery of diltiazem hydrochloride. Int J Biol Macromol 66:158–165

    CAS  PubMed  Google Scholar 

  • Savage GP, Catherwood DJ (2007) Determination of oxalates in Japanese taro corms using an in vitro digestion assay. Food Chem 105(1):383–388

    CAS  Google Scholar 

  • Savage GP, Dubois M (2006) The effect of soaking and cooking on the oxalate content of taro leaves. Int J Food Sci Nutr 57(5–6):376–381

    CAS  PubMed  Google Scholar 

  • Sefa-Dedeh S, Kofi-Agyir SE (2002) Starch structure and some properties of cocoyam (Xanthosoma sagittifolium and Colocasia esculenta) starch and raphides. J Food Chem 74:435–444

    Google Scholar 

  • Sefa-Dedeh S, Kofi-Agyir SE (2004) Chemical composition and the effect of processing on oxalate content of cocoyam Xanthosoma sagittifolium and Colocasia esculenta cormels. Food Chem 85(4):479–487

    CAS  Google Scholar 

  • Seltzer RD, Strumeyer DH (1990) Purification and characterization of esculentamin, a proteinaceous alpha‐amylase inhibitor from the taro root, Colocasia esculenta. J Food Biochem 14(3):199–217

    CAS  Google Scholar 

  • Sen S, Bhattacharya A, Mazumdar D, Sen H, Das AK, Pal S (2005) Nutrient and antinutrient composition of cormels of Colocasia esculenta var. antiquorum. J Veg Sci 11(4):17–33

    CAS  Google Scholar 

  • Shah BN, Nayak BS, Bhatt SP, Jalalpure SS, Sheth AK (2007) The anti-inflammatory activity of the leaves of Colocasia esculenta. Saudi Pharm J 15:3–4

    Google Scholar 

  • Shewry PR (2003) Tuber storage proteins. Ann Bot 91(7):755–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simsek S, El SN (2012) Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydr Polym 90(3):1204–1209

    CAS  PubMed  Google Scholar 

  • Singh B, Namrata K, Lokendra, Dwivedi SC (2011) Antibacterial and antifungal activity of Colocasia esculenta aqueous extract: an edible plant. J Pharm Res 4(5):1459

    Google Scholar 

  • South Pacific Commission (1992) Taro. SPC South Pacific Foods Leaflet Revised, No 1

    Google Scholar 

  • Sugimoto Y, Ohnishi K, Takaya T, Fuwa H (1979) Comparative susceptibility to pancreatin starch granules from different plant species. J Jpn Soc Starch Sci 29:19–26

    Google Scholar 

  • Sugimoto Y, Nishihara K, Fuwa H (1986) Some properties of taro (Ishikawa-wase and Takenokoimo) and yam (Iseimo and Nagaimo) starch. J Jpn Soc Starch Sci 33(3):169–176

    CAS  Google Scholar 

  • Sugimoto Y, Nishihara K, Abe K, Fujita S, Fuwa H (1987) Developmental changes in starch properties of the taro (Colasia esculenta (L.) Schott). J Jpn Soc Starch 34(1):1–10

    CAS  Google Scholar 

  • Tagodoe A, Nip WK (1994) Functional properties of raw and precooked taro (Colocasia esculenta) flours. Int J Food Sci Technol 29:457–462

    CAS  Google Scholar 

  • Taki M, Yamada T, Nakaya K (1972) Studies on the mucilage of tubers of Colocasia antiquorum Schott. var. esculenta Engl. (Part 1). Bull Fac Agric Meiji Univ 43:105–113

    Google Scholar 

  • Tanaka Y, Nguyen VK (2007) Edible wild plants of Vietnam: the bountiful garden. Orchid Press, Bangkok, 175 pp

    Google Scholar 

  • Tanaka R, Sakano Y, Nagatsu A, Shibuya M, Ebizuka Y, Goda Y (2005) Synthesis of digalactosyl diacylglycerols and their structure-inhibitory activity on human lanosterol synthase. Bioorg Med Chem Lett 15(1):159–162

    CAS  PubMed  Google Scholar 

  • Tarak D, Namsa ND, Tangjang S, Arya SC, Rajbonshi B, Samal PK, Mandal M (2011) An inventory of the ethnobotanicals used as anti-diabetic by a rural community of Dhemaji district of Assam, Northeast India. J Ethnopharmacol 138(2):345–350

    PubMed  Google Scholar 

  • Terasawa N, Saotome A, Tachimura Y, Mochizuki A, Ono H, Takenaka M, Murata M (2007) Identification and some properties of anthocyanin isolated from Zuiki, stalk of Colocasia esculenta. J Agric Food Chem 55(10):4154–4159

    CAS  PubMed  Google Scholar 

  • Thakur K, Kaur M, Kaur S, Kaur A, Kamboj SS, Singh J (2013) Purification of Colocasia esculenta lectin and determination of its anti-insect potential towards Bactrocera cucurbitae. J Environ Biol 34(1):31–36

    CAS  PubMed  Google Scholar 

  • The Plant List (2014) Colocasia esculenta (L.) Schott. http://www.theplantlist.org

  • Tripathi AK, Kohli S (2013) Phytochemical screening and evaluation of antidiabetic activity of Colocasia esculenta (L) leaves on STZ induced diabetic rats. Adv Pharmacol Toxicol 14(2):1–12

    Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) (2014) USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • Vasant OK, Vijay BG, Virbhadrappa SR, Dilip NT, Ramahari MV, Laxamanrao BS (2012) Antihypertensive and diuretic effects of the aqueous extract of Colocasia esculenta Linn. leaves in experimental paradigms. Iran J Pharm Res 11(2):621–634

    PubMed Central  PubMed  Google Scholar 

  • Wagner WL, Herbst DR, Sohmer SH (1999) Manual of the flowering plants of Hawaii. Revised edn. Bernice P. Bishop Museum special publication. University of Hawai’i Press/Bishop Museum Press, Honolulu. 1919 pp. (2 vols)

    Google Scholar 

  • Wang JK, Higa S (eds) (1983) Taro: a review of Colocasia esculenta and its potentials. University of Hawaii Press, Honolulu, 418 pp

    Google Scholar 

  • Wang KM, Kumar S, Cheng YS, Venkatagiri S, Yang AH, Yeh KW (2008) Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta). FEBS J 275(20):4980–4989

    CAS  PubMed  Google Scholar 

  • Warrier PK, Nambiar VPK, Ramankutty C, Nair RV (1993) Indian medicinal plants. A compendium of 500 species, vol 2, Orient Longman, Hyderabad, India

    Google Scholar 

  • Watt G (2014) A dictionary of the economic products of India, vol 2. Cambridge University Press, Cambridge, 696 pp

    Google Scholar 

  • Wilson JE, Siemonsma JS (1996) Colocasia esculenta (L.) Schott. In: Flach M, Rumawas F (eds) Plant resources of South-East Asia No 9. Plants yielding non-seed carbohydrates. Backhuys Publishers, Leiden, pp 69–72

    Google Scholar 

  • Wong KC, Chong FN, Chee SG (1998) Volatile constituents of taro (Colocasia esculent (L.) Schott). J Essent Oil Res 10(1):93–95

    CAS  Google Scholar 

  • Xu JC, Yang YP, Ou YD, Ayad WG, Eyzaguirre PB (2001) Genetic diversity in taro (Colocasia esculenta Schott, Araceae) in China: an ethnobotanical and genetic approach. Econ Bot 55(1):14–31

    Google Scholar 

  • Yamashita E, Yoshikawa N (1973) Studies on the mucilage in satoimo (Colocasia antiquorum Schott var. esculenta Engl.). J Jpn Soc Food Nutr 26(5):303–307. (In Japanese)

    CAS  Google Scholar 

  • Yang AH, Yeh KW (2005) Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaohsiung No.1). Planta 221:493–501

    CAS  PubMed  Google Scholar 

  • Yannai S (ed) (2003) Dictionary of food compounds with CD-ROM: additives, flavors, and ingredients. Chapman & Hall/CRC, Boca Raton, 1784 pp

    Google Scholar 

  • Zhou ZS, Chen ZP, Xu ZF (2010) Potential of trap crops for integrated management of the tropical armyworm, Spodoptera litura in tobacco. J Insect Sci 10:117

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2015). Colocasia esculenta . In: Edible Medicinal and Non Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9511-1_13

Download citation

Publish with us

Policies and ethics