Skip to main content

Dynamic Geochemical Models to Assess Deposition Impacts of Metals for Soils and Surface Waters

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Part of the book series: Environmental Pollution ((EPOL,volume 25))

  • 1144 Accesses

Abstract

This chapter describes the use of geochemical models to assess the impacts of the deposition of metals on the concentrations of metals in soils and surface waters. We describe three dynamic models: SMART2-metals, SMARTml and CHUM-AM, each with their specific purpose and geographical scale of application. All three models include the most relevant metal fluxes and soil chemical processes, but with various level of detail related to their specific aim and scale. The ability of the models to simulate the long-term trends of metal fate was assessed by comparing model results and observations of either the present metal status, using hind cast simulations with historical deposition trends, or metal pools in chronosequences of afforested agricultural land of different stand age, or metal concentrations observed in a long-term monitoring study. The model simulations show the long times needed to approach equilibrium concentrations of metals due to changes in the atmospheric deposition of metals, sulphur and nitrogen. Dynamic models are therefore indispensable tools for the assessment of metal concentrations at changing levels of metal inputs to soil-water systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashmore, M., van den Berg, L., Terry, A., Tipping, E., Lawlor, A. J., Lofts, S., Thacker, S. A., Vincent, C. D., Hall, J., O’Hanlon, S., Shotbolt, L., Harmens, H., Lloyd, A., Norris, D., Nemitz, E., Jarvis, K., & Jordan, C. (2007). Development of an effects-based approach for toxic metals. Report to the UK Department for Environment, Food and Rural Affairs, the Scottish Executive, the National Assembly for Wales and the Department of the Environment in Northern Ireland. Contract CPEA 24. University of York.

    Google Scholar 

  • Berg, T., Røyset, O., & Steinnes, E. (1995). Moss (Hylocomium Splendens) used as biomonitor of atmospheric trace element deposition: Estimation of uptake efficiencies. Atmospheric Environment, 29, 353–360.

    Article  CAS  Google Scholar 

  • Bonten, L. T. C., Groenenberg, J. E., Weng, L., & van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310.

    Article  CAS  Google Scholar 

  • Bonten, L. T. C., Groenenberg, J. E., Meesenburg, H., & De Vries, W. (2011). Using advanced surface complexation models for modelling soil chemistry under forests. The Solling case. Environmental Pollution, 159, 2831–2839.

    Article  CAS  Google Scholar 

  • De Vries, W., & Groenenberg, J. E. (2009). Evaluation of approaches to calculate critical metal loads for forest ecosystems. Environmental Pollution, 157, 3422–3433.

    Article  CAS  Google Scholar 

  • De Vries, W., Posch, M., & Kämäri, J. (1989). Modeling time patterns of forest soil acidification for various deposition scenarios. In J. Kämäri, D. F. Brakke, A. Jenkins, S. A. Norton, & R. F. Wright (Eds.), Regional acidification models. Geographic extent and time development (pp. 129–149). Berlin: Springer.

    Google Scholar 

  • De Vries, W., Bakker, D. J., Groenenberg, J. E., Reinds, G. J., Bril, J., & van Jaarsveld, J. A. (1998). Calculation and mapping of critical loads for heavy metals and persistent organic pollutants for Dutch forest soils. Journal of Hazardous Materials, 61, 99–106.

    Article  CAS  Google Scholar 

  • Deller, B. (1983). Determination of the CEC of carbonate soils with unbuffered 0.1 M BaCl2. Zeitschrift für Pflanzenernährung Bodenkunde, 146, 348–352.

    Article  CAS  Google Scholar 

  • Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N. J. (2004). Leaching of heavy metals from contaminated soils: An experimental and modeling study. Environmental Science and Technology, 38, 4390–4395.

    Article  CAS  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide. New York: Wiley.

    Google Scholar 

  • Erisman, J. W., Potma, C., Draaijers, G., van Leeuwen, E., & van Pul, A. (1995). A generalised description of the deposition of acidifying pollutants on a small scale in Europe. Water Air & Soil Pollution, 85, 2101–2106.

    Article  CAS  Google Scholar 

  • FAO. (1998). World reference base for soil resources. World Soil Resources Report 84. Rome: FAO.

    Google Scholar 

  • Groenenberg, J. E., Dijkstra, J. J., Bonten, L. T. C., De Vries, W., & Comans, R. N. J. (2012). Evaluation of the performance and limitations of empirical regression models and process based multisurface models to predict trace element solubility in soils. Environmental ­Pollution, 168, 98–107.

    Article  Google Scholar 

  • Helling, C. S., Chesters, G., & Corey, R. B. (1964). Contribution of organic matter and clay to soil cation exchange capacity as affected by the pH of the saturating solution. Soil Science Society of America Journal, 28, 517–520.

    Article  CAS  Google Scholar 

  • Karltun, E., Harrison, A. F., Alriksson, A., Bryant, C., Garnett, M. H., & Olsson, M. T. (2005). Old organic carbon in soil solution DOC after afforestation-Evidence from 14C analysis. Geoderma, 127, 188–195.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., Van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, 147–166.

    Article  CAS  Google Scholar 

  • Kros, J., Reinds, G. J., De Vries, W., Latour, J. B., & Bollen, M. J. S. (1995). Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid ­deposition and hydrology. SC-DLO Report 95. Wageningen, The Netherlands.

    Google Scholar 

  • Lofts, S., Chapman, P., Dwyer, R., McLaughlin, M., Schoeters, I., Sheppard, S., Adams, W., ­Alloway, B., Antunes, P., Campbell, P., Davies, B., Degryse, F., De Vries, W., Farley, K. J., ­Garrett, R. G., Green, A., Groenenberg, B. J., Hale, B., Harrass, M., Hendershot, W. H., Keller, A., Lanno, R., Liang, T., Liu, W.-X., Ma, Y., Menzie, C., Moolenaar, S. W., Piatkiewicz, W., Reimann, C., Rieuwerts, J. S., Santore, R. C., Sauvé, S., Schuetze, G., Schlekat, C., Skeaff, J., Smolders, E., Tao, S., Wilkins, J., & Zhao, F.-J. (2007). Critical loads of metals and other trace elements to terrestrial environments. Environmental Science and Technology, 41, 6326–6331.

    Article  CAS  Google Scholar 

  • Meesenburg, H., Meiwes, K. J., & Rademacher, P. (1995). Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air and Soil Pollution, 85, 611–616.

    Article  CAS  Google Scholar 

  • Meeussen, J. C. L. (2003). ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environmental Science Technology, 37, 1175–1182.

    Article  CAS  Google Scholar 

  • Römkens, P. F. A. M. (1998). Effects of land use changes on organic matter dynamics and trace metal solubility in soils. Ph.D., Groningen, University of Groningen.

    Google Scholar 

  • Römkens, P. F. A. M., & Salomons, W. (1998). Cd, Cu and Zn solubility in arable and forest soils: Consequences of land use changes for metal mobility and risk assessment. Soil Science, 163, 859–871.

    Article  Google Scholar 

  • Schnoor, J., & Stumm, W. (1986). The role of chemical weathering in the neutralization of acidic deposition. Schweizerische Zeitschrift für Hydrologie, 48, 171–195.

    Article  CAS  Google Scholar 

  • Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Stidson, R. T., Hamilton-Taylor, J., & Tipping, E. (2002). Laboratory dissolution studies of rocks from the Borrowdale Volcanic Group (English Lake District). Water Air and Soil Pollution, 138, 335–358.

    Article  CAS  Google Scholar 

  • Tipping, E. (1998). Humic ion-binding Model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4, 3–47.

    Article  CAS  Google Scholar 

  • Tipping, E. (2002). Cation binding by humic substances. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tipping, E., Lawlor, A. J., & Lofts, S. (2006a). Simulating the long-term chemistry of an upland UK catchment: Major solutes and acidification. Environmental Pollution, 141, 151–166.

    Article  CAS  Google Scholar 

  • Tipping, E., Lawlor, A. J., Lofts, S., & Shotbolt, L. (2006b). Simulating the long-term chemistry of an upland UK catchment: Heavy metals. Environmental Pollution, 141, 139–150.

    Article  CAS  Google Scholar 

  • Tipping, E., Yang, H., Lawlor, A. J., Rose, N. L., & Shotbolt, L. (2007). Trace metals in the catchment, loch and sediments of Lochnagar: Measurements and modelling. In N. L. Rose (Ed.), Lochnagar: The natural history of a mountain lake (pp. 345–373). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Tipping, E., Rothwell, J. J., Shotbolt, L., & Lawlor, A. J. (2010). Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (Northern England). Environmental Pollution, 158, 1521–1529.

    Article  CAS  Google Scholar 

  • Van Jaarsveld, J. A., & de Leeuw, F. A. A. M. (1993). OPS: An operational atmospheric transport model for priority substances. Environmental Software, 8, 91–100.

    Article  Google Scholar 

Download references

Acknowledgements

Work on the Dutch and Swedish chronosequences was financed through the European Commission, 4th FP, contract no. FAIR-CT96-1983. We thank Mats Olsson from the Swedish University of Agricultural Sciences for providing the data of the Swedish chronosequences. Figure 9.4 is reprinted from Environmental Pollution, Vol. 158, Tipping E, Rothwell JJ, Shotbolt L, Lawlor AJ, Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England), Pages 1521–1529, Copyright 2010, with permission from Elsevier. Figure 9.5 is reprinted from Environmental Pollution, Vol. 159, Bonten LTC, Groenenberg JE, Meesenburg H, De Vries W, Using advanced surface complexation models for modelling soil chemistry under forests. The Solling case, Pages 2831–2839, Copyright 2011, with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Groenenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Groenenberg, J., Tipping, E., Bonten, L., de Vries, W. (2015). Dynamic Geochemical Models to Assess Deposition Impacts of Metals for Soils and Surface Waters. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_9

Download citation

Publish with us

Policies and ethics