Skip to main content

Mass Balance Models to Derive Critical Loads of Nitrogen and Acidity for Terrestrial and Aquatic Ecosystems

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 25))

Abstract

This chapter describes the standard approaches (mass balance models) to calculate critical loads of nutrient nitrogen (N) as well as for sulphur (S) and N acidity for both terrestrial and aquatic ecosystems. The description focuses on the so-called Simple Mass Balance (SMB) model for nutrient nitrogen and acidity for terrestrial ecosystems and on the First-order Acidity Balance (FAB) model for aquatic ecosystems. The model descriptions are in accordance with the methods for calculating critical loads under the LRTAP Convention. For both types of models, a discussion is presented on the required input data, data sources and standard model parameter values used in their application. For acidity, the chapter elaborates on the critical load function as there is no unique critical load of S and N acidity, and on the approach to assess critical load exceedances. The chapter ends with a discussion on the possible formulation of critical loads based on biodiversity criteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aherne, J., Kelly-Quinn, M., & Farrell, E. P. (2002). A survey of lakes in the Republic of Ireland: Hydrochemical characteristics and acid sensitivity. Ambio: A Journal of the Human Environment, 31, 452–459.

    Google Scholar 

  • Baker, L. A., & Brezonik, P. L. (1988). Dynamic model of in-lake alkalinity generation. Water Resources Research, 24, 65–74.

    Article  CAS  Google Scholar 

  • Battarbee, R. W., Allott, T. E. H., Juggins, S., Kreiser, A. M., Curtis, C., & Harriman, R. (1996). Critical loads of acidity to surface waters: An empirical diatom-based paleolimnological model. Ambio: A Journal of the Human Environment, 25, 366–369.

    Google Scholar 

  • Bolt, G. H., & Bruggenwert, M. G. M. (1976). Composition of the soil. In G. H. Bolt & M. G. M. Bruggenwert (Eds.), Soil chemistry A. Basic elements (pp. 1–12). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Bonten, L., Mol-Dijkstra, J., & Reinds, G. J. (2011). Validation of VSD+ and critical loads for nutrient N. In M. Posch, J. Slootweg, & J.-P. Hettelingh (Eds.), Modelling critical thresholds and temporal changes of geochemistry and vegetation diversity: CCE status report 2011 (pp. 49–52). Bilthoven, The Netherlands: RIVM Report 680359003.

    Google Scholar 

  • Brakke, D. F., Henriksen, A., & Norton, S. A. (1989). Estimated background concentrations of sulfate in dilute lakes. Water Resources Bulletin, 25, 247–253.

    Article  CAS  Google Scholar 

  • Brakke, D. F., Henriksen, A., & Norton, S. A. (1990). A variable F-factor to explain changes in base cation concentrations as a function of strong acid deposition. Verh. Internat. Verein. Limnol., 24, 146–149.

    Google Scholar 

  • Brook, G. A., Folkoff, M. E., & Box, E. O. (1983). A world model of carbon dioxide. Earth Surface Processes and Landforms, 8, 79–88.

    Article  CAS  Google Scholar 

  • Burman, R., & Pochop, L. O. (1994). Evaporation, evapotranspiration and climatic data. Amsterdam: Elsevier.

    Google Scholar 

  • Cosby, B. J., Ferrier, R. C., Jenkins, A., & Wright, R. F. (2001). Modelling the effects of acid deposition: Refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–517.

    Article  Google Scholar 

  • Cronan, C. S., Walker, W. J., & Bloom, P. R. (1986). Predicting aqueous aluminium concentrations in natural waters. Nature, 324, 140–143.

    Google Scholar 

  • De Vries, W. (1988). Critical deposition levels for nitrogen and sulphur on Dutch forest ecosystems. Water, Air, & Soil Pollution, 42, 221–239.

    Article  CAS  Google Scholar 

  • De Vries, W. (1991). Methodologies for the assessment and mapping of critical loads and the impact of abatement strategies on forest soils. (Report 46). Wageningen, The Netherlands: DLO Winand Staring Center for Integrated Land, Soil and Water Research.

    Google Scholar 

  • De Vries, W. (1993). Average critical loads for nitrogen and sulfur and its use in acidification abatement policy in the Netherlands. Water, Air, & Soil Pollution, 68, 399–434.

    Article  CAS  Google Scholar 

  • De Vries, W., & Posch, M. (2003). Derivation of cation exchange constants for sand, loess, clay and peat soils on the basis of field measurements in the Netherlands (Alterra Report 701). Wageningen: Alterra.

    Google Scholar 

  • De Vries, W., Posch, M., Reinds, G. J., & Kämäri, J. (1993). Critical loads and their exceedance on forest soils in Europe. (Report 58 (revised version)). Wageningen, The Netherlands: DLO Winand Staring Centre.

    Google Scholar 

  • De Vries, W., Reinds, G. J., & Posch, M. (1994). Assessment of critical loads and their exceedance on European forests using a one-layer steady-state model. Water, Air, & Soil Pollution, 72, 357–394.

    Article  CAS  Google Scholar 

  • De Wit, H. A., & Lindholm, M. (2010). Nutrient enrichment effects of atmospheric N deposition on biology in oligotrophic surface waters—A review. (NIVA-Report 6007). Oslo, Norway.

    Google Scholar 

  • Dillon, P. J., & Molot, L. A. (1990). The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry, 11, 23–43.

    Article  Google Scholar 

  • Dittmar, W. (1884). Report on researches into the composition of ocean water, collected by H.M.S. Challenger, during the years 1873–1876. Physics and Chemistry, 1, 1–251.

    Google Scholar 

  • Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30, 297–306.

    Article  CAS  Google Scholar 

  • Dutch, J., & Ineson, P. (1990). Denitrification of an upland forest site. Forestry, 63, 363–377.

    Article  Google Scholar 

  • Eurosoil. (1999). Metadata: soil geographical data base of Europe v. 3.2.8.0. Ispra: Eurosoil.

    Google Scholar 

  • Forsius, M., Posch, M., Aherne, J., Reinds, G. J., Christensen, J., & Hole, L. (2010). Assessing the impacts of long-range sulfur and nitrogen deposition on arctic and sub-arctic ecosystems. Ambio: A Journal of the Human Environment, 39, 136–147.

    Article  CAS  Google Scholar 

  • Gunn, J., & Trudgill, S. T. (1982). Carbon dioxide production and concentrations in the soil atmosphere: A case study from New Zealand volcanic ash soils. Catena, 9, 81–94.

    Article  CAS  Google Scholar 

  • Henriksen, A. (1984). Changes in base cation concentrations due to freshwater acidification. Verh. Internat. Verein. Limnol., 22, 692–698.

    CAS  Google Scholar 

  • Henriksen, A., & Posch, M. (2001). Steady-state models for calculating critical loads of acidity for surface waters. Water, Air, & Soil Pollution: Focus, 7, 375–398.

    Article  Google Scholar 

  • Henriksen, A., Kämäri, J., Posch, M., & Wilander, A. (1992). Critical loads of acidity: Nordic surface waters. Ambio: A Journal of the Human Environment, 21, 356–363.

    Google Scholar 

  • Henriksen, A., Forsius, M., Kämäri, J., Posch, M., & Wilander, A. (1993). Exceedance of critical loads for lakes in Finland, Norway and Sweden: Reduction requirements for nitrogen and sulfur deposition. (Report 2841). Oslo, Norway: Norwegian Institute for Water Research.

    Google Scholar 

  • Hettelingh, J. P., Sverdrup, H., & Zhao, D. (1995). Deriving critical loads for Asia. Water, Air, & Soil Pollution, 85, 2565–2570.

    Article  CAS  Google Scholar 

  • Hettelingh, J.-P., Posch, M., & de Smet, P. A. M. (2001). Multi-effect critical loads used in multi-pollutant reduction agreements in Europe. Water, Air, & Soil Pollution, 130, 1133–1138.

    Article  Google Scholar 

  • Hindar, A., Posch, M., Henriksen, A., Gunn, J., & Snucins, E. (2000). Development and application of the FAB model to calculate critical loads of S and N for lakes in the Killarney Provincial Park (Ontario, Canada). (Report 4202). Oslo, Norway: Norwegian Institute for Water Research.

    Google Scholar 

  • Hornung, M., Sutton, M. A., & Wilson, R. B. (1995). Mapping and modelling of critical loads for nitrogen: A workshop report. United Kingdom: Institute of Terrestrial Ecology.

    Google Scholar 

  • Jacobsen, C., Rademacher, P., Meesenburg, H., & Meiwes, K. J. (2003). Element contents in tree compartments—Literature study and data collection (Berichte des Forschungszentrums Waldökosysteme, Series B, Vol. 69). Göttingen: Niedersächsische Forstliche Versuchsanstalt (in German).

    Google Scholar 

  • Johansson, M., & Tarvainen, T. (1997). Estimation of weathering rates for critical load calculations in Finland. Environmental Geology, 29, 158–164.

    Article  CAS  Google Scholar 

  • Johnson, D. W. (1984). Sulfur cycling in forests. Biogeochemistry, 1, 29–43.

    Article  CAS  Google Scholar 

  • Johnson, D. W., Henderson, G. S., Huff, D. D., Lindberg, S. E., Richter, D. D., Shriner, D. S., Todd, P. E., & Turner, J. (1982). Cycling of organic and inorganic sulphur in a chestnut oak forest. Oecologia, 54, 141–148.

    Article  Google Scholar 

  • Kaste Ø., & Dillon P. J. (2003). Inorganic nitrogen retention in acid-sensitive lakes in southern Norway and southern Ontario, Canada—A comparison of mass balance data with and empirical N retention model. Hydrological Processes, 17, 2393–2407.

    Google Scholar 

  • Kelly, C. A., Rudd, J. W. M., Hesslein, R. H., Schindler, D. W., Dillon, P. J., Driscoll, C. T., Gherini, S. A., & Hecky, R. E. (1987). Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochemistry, 3, 129–140.

    Article  CAS  Google Scholar 

  • Kimmins, J. P., Binkley, D., Chatarpaul, L., & de Catanzaro, J. (1985). Biogeochemistry of temperate forest ecosystems literature on inventories and dynamics of biomass and nutrients (Information Report PI-X-47E/F). Canada: Petawawa National Forestry Institute.

    Google Scholar 

  • Larssen, T., & Høgåsen, T. (2003). Critical loads and critical load exceedances in Norway [in Norwegian, with English summary and appendix]. (Report 4722). Oslo, Norway: Norwegian Institute for Water Research.

    Google Scholar 

  • Lichtner, P. C. (1992). Time-space continuum description of fluid/rock interaction in permeable media. Water Resources Research, 28, 3135–3155.

    Article  CAS  Google Scholar 

  • Lyman, J., & Fleming, R. H. (1940). Composition of sea water. Journal of Marine Research, 3, 134–146.

    CAS  Google Scholar 

  • Monteith, J. L., & Unsworth, M. (1990). Principles of environmental physics (2nd ed.). London: Arnold.

    Google Scholar 

  • Mulder, J., & Stein, A. (1994). The solubility of aluminum in acidic forest soils: Long-term changes due to acid deposition. Geochimica et Cosmochimica Acta, 58, 85–94.

    Article  CAS  Google Scholar 

  • NEG/ECP. (2001). Protocol for assessment and mapping of forest sensitivity to atmospheric S and N deposition. prepared by the NEG/ECP Forest Mapping Group, New England Governors/Eastern Canadian Premiers.

    Google Scholar 

  • Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulphur and nitrogen. Report from a Workshop held at Skokloster Sweden March 19–24 1988. Miljø rapport 1988: 15. Copenhagen Denmark Nordic Council of Ministers.

    Google Scholar 

  • Oliver, B. G., Thurman, E. M., & Malcolm, R. L. (1983). The contribution of humic substances to the acidity of colored natural waters. Geochimica et Cosmochimica Acta, 47, 2031–2035.

    Article  CAS  Google Scholar 

  • Olsson, M., Rosén, K., & Melkerud, P. A. (1993). Regional modelling of base cation losses from Swedish forest soils due to whole tree harvesting. Applied Geochemistry, 8, 189–194.

    Article  Google Scholar 

  • Ouimet, R., Arp, P. A., Watmough, S. A., Aherne, J., & Demarchant, I. (2006). Determination and mapping critical loads of acidity and exceedances for upland forest soils in eastern Canada. Water, Air, & Soil Pollution, 172, 57–66.

    Article  CAS  Google Scholar 

  • Paces, T. (1983). Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments. Geochimica et Cosmochimica Acta, 47, 1855–1863.

    Article  CAS  Google Scholar 

  • Posch, M. (2002). Impacts of climate change on critical loads and their exceedances in Europe. Environmental Science Policy, 5, 307–317.

    Article  CAS  Google Scholar 

  • Posch, M., & Kurz, D. (2007). A2M—A program to compute all possible mineral modes from geochemical analyses. Computers and Geosciences, 33, 563–572.

    Article  CAS  Google Scholar 

  • Posch, M., & Reinds, G. J. (2009). A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmental Modelling and Software, 24, 329–340.

    Article  Google Scholar 

  • Posch, M., Forsius, M., & Kämäri, J. (1993). Critical loads of sulfur and nitrogen for lakes 1: Model description and estimation of uncertainty. Water, Air, & Soil Pollution, 66, 173–192.

    Article  CAS  Google Scholar 

  • Posch, M., Kämäri, J., Forsius, M., Henriksen, A., & Wilander, A. (1997). Exceedance of critical loads for lakes in Finland, Norway and Sweden: Reduction requirements for acidifying nitrogen and sulfur deposition. Environmental Management, 21, 291–304.

    Article  Google Scholar 

  • Posch, M., Hettelingh, J.-P., & De Smet, P. A. M. (2001). Characterization of critical load exceedances in Europe. Water, Air, & Soil Pollution, 130, 1139–1144.

    Article  Google Scholar 

  • Posch, M., Hettelingh, J.-P., Slootweg, J., & Downing, R. J. (2003). Modelling and mapping of critical thresholds in Europe—CCE status report 2003. (RIVM Report 259101013). Bilthoven, The Netherlands.

    Google Scholar 

  • Posch, M., Eggenberger, U., Kurz, D., & Rihm, B. (2007). Critical loads of acidity for alpine lakes. A weathering rate calculation model and the generalized First-order Acidity Balance (FAB) model applied to alpine lake catchments. (Environmental Studies 0709). Berne, Switzerland: Federal Office for the Environment.

    Google Scholar 

  • Posch, M., Aherne, J., & Hettelingh, J.-P. (2011). Nitrogen critical loads using biodiversity-related critical limits. Environmental Pollution, 159, 2223–2227.

    Article  CAS  Google Scholar 

  • Posch, M., Aherne, J., Forsius, M., & Rask, M. (2012). Past, present, and future exceedance of critical loads of acidity for surface waters in Finland. Environmental Science & Technology, 46, 4507–4514.

    Article  CAS  Google Scholar 

  • Rapp, L., & Bishop, K. (2003). Modeling surface water critical loads with PROFILE: Possibilities and challenges. Journal of Environmental Quality, 32, 2290–2300.

    Article  CAS  Google Scholar 

  • Reinds, G. J., Posch, M., & De Vries, W. (2001). A semi-empirical dynamic soil acidification model for use in spatially explicit integrated assessment models for Europe. (Alterra rapport 84). Wageningen (Netherlands): Alterra.

    Google Scholar 

  • Reuss, J. O., & Johnson, D. W. (1986). Acid deposition and the acidification of soils and waters. Berlin: Springer.

    Book  Google Scholar 

  • Rosén, K., Gundersen, P., Tegnhammar, L., Johansson, M., & Frogner, T. (1992). Nitrogen enrichment of Nordic forest ecosystems—The concept of critical loads. Ambio: A Journal of Human Environment, 21, 364–368.

    Google Scholar 

  • Santore, R. C., Driscoll, C. T., & Aloi, M. (1995). A model of soil organic matter and its function in temperate forest soil development. In W. W. McFee & J. M. Kelly (Eds.), Carbon forms and functions in forest soils (pp. 275–298). Madison: Soil Science Society of America.

    Google Scholar 

  • Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100, 179–196.

    Article  CAS  Google Scholar 

  • Sogn, T. A., Stuanes, A. O., & Abrahamsen, G. (1999). The capacity of forest soil to absorb anthropogenic N. Ambio: A Journal of Human Environment, 28, 346–349.

    Google Scholar 

  • Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., Fernandez, P. G., Hildingsson, A., & De Vries, W. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Forest Ecology and Management, 258, 1735–1750.

    Article  Google Scholar 

  • Sverdrup, H. U. (1990). The kinetics of base cation release due to chemical weathering. Sweden: Lund University Press.

    Google Scholar 

  • Sverdrup, H., & De Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water, Air, & Soil Pollution, 72, 143–162.

    Article  CAS  Google Scholar 

  • Sverdrup, H. U., & Warfvinge, P. G. (1988). Chemical weathering of minerals in the Gardsjön catchment in relation to a model based on laboratory rate coefficients. In J. Nilsson & P. Grennfelt (Eds.), Critical loads for sulphur and nitrogen; Miljø rapport 1988 15 (pp. 131–149). Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Sverdrup, H. U., Johnson, M. W., & Fleming, R. H. (1946). The oceans—Their physics, chemistry and general biology. New York: Prentice-Hall.

    Google Scholar 

  • Sverdrup, H., De Vries, W., & Henriksen, A. (1990). Mapping critical loads. A guidance manual to criteria calculation methods data collection and mapping. Miljø rapport 1990: 14. Nordic Council of Ministers Copenhagen 1990.

    Google Scholar 

  • UBA. (2004). Mapping manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Berlin, Germany: Texte 52/04, Federal Environmental Agency.

    Google Scholar 

  • Ulrich, B., & Sumner, M. E. (Eds.). (1991). Soil acidity. Berlin: Springer.

    Google Scholar 

  • UNECE. (1995). Calculation of critical loads of nitrogen as a nutrient. Summary report on the development of a library of default values (Document EB.AIR/WG.1/R.108). Geneva, Switzerland: United Nations Economic Commission for Europe.

    Google Scholar 

  • UNECE. (2001). Workshop on chemical criteria and critical limits (Document EB.AIR/WG.1/2001/13). Geneva, Switzerland: United Nations Economic Commission for Europe.

    Google Scholar 

  • Van der Salm, C., & De Vries, W. (2001). A review of the calculation procedure for critical acid loads for terrestrial ecosystems. Science of the Total Environment, 271, 11–25.

    Article  Google Scholar 

  • Van Loon, M., Tarrasón, L., & Posch, M. (2005). Modelling base cations in Europe. (EMEP Technical Report MSC-W 2/2005). Oslo, Norway.

    Google Scholar 

  • Warfvinge, P., & Sverdrup, H. (1992). Calculating critical loads of acid deposition with PROFILE. A steady-state soil chemistry model. Water, Air, & Soil Pollution, 63, 119–143.

    Article  CAS  Google Scholar 

  • Warfvinge, P., & Sverdrup, H. (1995). Critical loads of acidity to Swedish forest soils: Methods, data and results. Lund: Dept. of Chemical Engineering, Lund University.

    Google Scholar 

  • Warfvinge, P., Falkengren-Grerup, U., Sverdrup, H., & Andersen, B. (1993). Modelling long-term cation supply in acidified forest stands. Environmental Pollution, 80, 209–221.

    Article  CAS  Google Scholar 

  • Weast, R. C., Lide, D. R., Astle, M. J., & Beyer, W. H. (Eds.). (1989). CRC handbook of chemistry and physics (70th ed.). Boca Raton: CRC.

    Google Scholar 

  • Wilander, A. (1994). Estimation of background sulphate concentrations in natural surface waters in Sweden. Water, Air, & Soil Pollution, 75, 371–387.

    Article  CAS  Google Scholar 

  • Zhao, Y., Duan, L., Larssen, T., Mulder, J., Hu, L., & Hao, J. (2007). Calculating critical loads for acidification for five forested catchments in China using an extended steady state function. Science of the Total Environment, 387, 54–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Posch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Posch, M., de Vries, W., Sverdrup, H. (2015). Mass Balance Models to Derive Critical Loads of Nitrogen and Acidity for Terrestrial and Aquatic Ecosystems. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_6

Download citation

Publish with us

Policies and ethics