Skip to main content

Critical Load Assessments and Dynamic Model Applications for Lakes in North America

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Part of the book series: Environmental Pollution ((EPOL,volume 25))

Abstract

Critical loads were first discussed by Canada and the United States during the early 1980s in the Memorandum of Intent on Transboundary Air Pollution—the earliest bilateral acid rain assessment. A legacy of this assessment is the specification of critical loads of acidity for surface waters in Canada.

This chapter reviews the application of steady-state and dynamic models to assess the impacts of acidic deposition on surface waters in North America. It describes the historic development of critical loads in Canada and the United States, and provides a broad overview of wide-scale regional applications of steady-state and dynamic models. Furthermore, the chapter presents a national application of the First-order Acidity Balance (FAB) model for surface waters in Canada, with reference to similar assessments in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aherne, J., & Shaw, P. D. (2010). Impacts of sulphur and nitrogen deposition in western Canada. Journal of Limnology, 69, 4–10.

    Article  Google Scholar 

  • Aherne, J., Dillon, P. J., & Cosby, B. J. (2003). Acidification and recovery of aquatic ecosystems in south-central Ontario, Canada: Regional application of the MAGIC model. Hydrology and Earth System Science, 7, 561–573.

    Article  CAS  Google Scholar 

  • Aherne, J., Posch, M., Dillon, P. J., & Henriksen, A. (2004). Critical loads of acidity for surface waters in south-central Ontario, Canada: Regional application of the first-order acidity balance (FAB) model. Water Air Soil Pollution, 4, 25–36.

    Article  CAS  Google Scholar 

  • Aherne, J., Futter, M. N., & Dillon, P. J. (2008). The impacts of future climate change and sulphur emission reductions on acidification recovery at Plastic Lake, Ontario. Hydrology and Earth System Science, 12, 383–392.

    Article  CAS  Google Scholar 

  • Arp, P. A. (1983). Modelling the effects of acid precipitation on soil leachates. A simple approach. Ecological Modelling, 19, 105–117.

    Article  CAS  Google Scholar 

  • Beamish, R. J., & Harvey, H. H. (1972). Acidification of La Cloche Mountain lakes, Ontario, and resulting fish mortalities. Journal of the Fisheries Research Board of Canada, 29, 1131–1143.

    Article  CAS  Google Scholar 

  • Blett, T. F., Lynch, J. A., Pardo, L. H., Huber, C., Haeuber, R., & Pouyat, R. (2014). FOCUS: A pilot study for national-scale critical loads development in the United States. Environmental Science and Policy, 38, 225–236.

    Article  Google Scholar 

  • Chen, L., & Driscoll, C. (2005a). A two-layer model to simulate variations in surface water chemistry draining a northern forest watershed. Water Resources Research, 41(9), 8 (W09425).

    Google Scholar 

  • Chen, L., & Driscoll, C. (2005b). Regional application of an integrated biogeochemical model to northern New England and Maine. Ecological Application, 14, 1783–1797.

    Google Scholar 

  • Clair, T. A., Dennis, I. F., & Cosby, B. J. (2003). Probable changes in lake chemistry in Canada’s Atlantic Provinces under proposed North American emission reductions. Hydrology and Earth System Science, 7, 574–582.

    Article  CAS  Google Scholar 

  • Clair, T. A., Dennis, I. F., Amiro, P. G., & Cosby, B. J. (2004). Past and future chemistry changes in acidified Nova Scotian Atlantic salmon (Salmo salar) rivers: A dynamic modeling approach. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1965–1975.

    Article  CAS  Google Scholar 

  • Clair, T. A., Aherne, J., Dennis, I. F., Gilliss, M., Couture, S., McNicol, D., Weeber, R., Dillon, P. J., Keller, W., Jeffries, D. S., Page, S., Timoffee, K., & Cosby, B. J. (2007). Past and future changes to acidified eastern Canadian lakes: A geochemical modeling approach. Applied Geochemistry, 22, 1189–1195.

    Article  CAS  Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Galloway, J. N. & Wright, R. F. (1985). Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research, 21, 51–63.

    Article  CAS  Google Scholar 

  • Dillon, P. J., Jeffries, D. S., Snyder, W., Reid, R., Yan, N. D., Evans, D., Moss, J., & Scheider, W. A. (1978). Acid precipitation in south-central Ontario: Recent observations. Journal of the Fisheries Research Board of Canada, 35, 809–815.

    Article  CAS  Google Scholar 

  • Dillon, P. J., Reid, R. A., & de Grosbois, E. (1987). The rate of acidification of aquatic ecosystems in Ontario, Canada. Nature, 329, 45–48.

    Article  CAS  Google Scholar 

  • Dupont, J., Clair, T. A., Gagnon, C., Jeffries, D. S., Kahl, J. S., Nelson, S. J., & Peckenham, J. S. (2005). Estimation of critical loads of acidity for lakes in northeastern United States and Eastern Canada. Environmental Monitoring and Assessment, 109, 275–291.

    Article  CAS  Google Scholar 

  • Eary, L. E., Jenne, E. A., Vail, L. W., & Girvin, D. C. (1989). Numerical models for predicting watershed acidification. Archives of Environmental Contamination and toxicology, 18, 29–53.

    Article  CAS  Google Scholar 

  • Environment Canada. (1997). 1997 Canadian acid rain assessment, volume 3: The effects on Canada’s lakes, rivers and wetlands. Ottawa: Environment Canada.

    Google Scholar 

  • Environment Canada. (2004). 2004 Canadian acid deposition science assessment. Ottawa: Environment Canada.

    Google Scholar 

  • Ferrier, R. C., Wright, R. F., Jenkins, A., & Barth, H. (2003). Predicting recovery of acidified freshwaters in Europe and Canada: An introduction. Hydrology and Earth System Science, 7, 431–435.

    Article  Google Scholar 

  • Gbondo-Tugbawa, S. S., Driscoll, C. T., Aber, J. D., & Likens, G. E. (2001). Evaluation of an integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystem. Water Resources Research, 37, 1057–1070.

    Article  CAS  Google Scholar 

  • Gherini, S. A., Mok, L., Hudson, R. J. M., Davis, G. F., Chen, C. W., & Goldstein, R. A. (1985). The ILWAS model: Formulation and application. Water Air and Soil Pollution, 26, 425–459.

    CAS  Google Scholar 

  • Gibson, J. J., Birks, S. J., Kumar, S., McEachern, P. M., & Hazewinkel, R. (2010). Inter-annual variations in water yield to lakes in northeastern Alberta: Implications for estimating critical loads of acidity. Journal of Limnology, 69, 126–134.

    Article  Google Scholar 

  • Hartman, M. D., Baron, J. S., & Ojima, D. S. (2007). Application of a coupled ecosystem-chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed. Ecological Modelling, 200, 493–510.

    Article  Google Scholar 

  • Henriksen, A. (1979). A simple approach for identifying and measuring acidification of freshwater. Nature, 278, 542–545.

    Article  CAS  Google Scholar 

  • Henriksen, A., & Posch, M. (2001). Steady-state models for calculating critical loads of acidity for surface waters. Water Air and Soil Pollution:Focus, 1, 375–398.

    Article  CAS  Google Scholar 

  • Henriksen, A., Dillon, P. J., & Aherne, J. (2002). Critical loads of acidity for surface waters in south-central Ontario, Canada: Regional application of the steady-state water chemistry (SSWC) model. Canadian Journal of Fisheries Aquatic Sciences, 59, 1287–1295.

    Article  CAS  Google Scholar 

  • Jeffries, D. S., & Lam, D. C. L. (1993). Assessment of the effect of acidic deposition on Canadian lakes: Determination of critical loads for sulphate deposition. Water Science and Technology, 28, 183–187.

    CAS  Google Scholar 

  • Jeffries, D., & Ouimet, R. (2005). Critical loads: Are they being exceeded? In 2004 Canadian acid deposition science assessment. Ottawa: Environment Canada.

    Google Scholar 

  • Jeffries, D. S., Lam, D. C. L., Moran, M. D., & Wong, I. (1999). The effect of SO2 emission controls on critical load exceedances for lakes in southeastern Canada. Water Science and Technology, 39, 165–171.

    Article  CAS  Google Scholar 

  • Jeffries, D. S., Semkin, R. G., Wong, I., & Gibson, J. J. (2010). Recently surveyed lakes in northern Manitoba and Saskatchewan, Canada: Characteristics and critical loads of acidity. Journal of Limnology, 69, 45–55.

    Article  Google Scholar 

  • Kaste, Ø., & Dillon, P. J. (2003). Inorganic nitrogen retention in acid-sensitive lakes in southern Norway and southern Ontario, Canada—a comparison of mass balance data with and empirical N retention model. Hydrological Processes, 17, 2393–2407.

    Article  Google Scholar 

  • Krám, P., Santore, R. C., Driscoll, C. T., Aber, J. D., & Hruška, J. (1999). Application of the forest-soil-water model (PnET-BGC/CHESS) to the Lysina catchment, Czech Republic. Abstract in International Forestry Review, 120, 9.

    Google Scholar 

  • Krzyzanowski, J., & Innes, J. L. (2010). Back to the basics—Estimating the sensitivity of freshwater to acidification using traditional approaches. Journal of Environmental Management, 91, 1227–1236.

    Article  CAS  Google Scholar 

  • Lam, D. C. L., Swayne, D. A., Storey, J., & Fraser, A. S. (1989). Watershed acidification models using the knowledge based systems approach. Ecological Modelling, 47, 131–152.

    Article  CAS  Google Scholar 

  • Lam, D. C. L., Puckett, K. J., Wong, I., Moran, M. D., Fenech, G., Jeffries, D. S., Olson, M. P., Whelpdale, D. M., McNicol, D. K., Mariam, Y. K. G., & Minns, C. K. (1998). An integrated acid rain assessment model for Canada: From source emission to ecological impact. Water Quality Research Journal of Canada, 33, 1–17.

    CAS  Google Scholar 

  • Landers, D. H., Overton, W. S., Linthurst, R. A., & Brakke, D. F. (1988). Eastern lake survey: Regional estimates of lake chemistry. Environmental Science & Technology, 22, 128–135.

    Article  CAS  Google Scholar 

  • Lehmann, C. M. B., Bowersox, V. C., & Larson, S. M. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. Environmental Pollution, 135, 347–361.

    Article  CAS  Google Scholar 

  • Likens, G. E., Bormann, F. H., & Johnson, N. M. (1972). Acid rain. Environment, 14, 33–40.

    Article  CAS  Google Scholar 

  • Lydersen, E., Larssen, T., & Fjeld, E. (2004). The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Science of the Total Environment, 326, 63–69.

    Article  CAS  Google Scholar 

  • Marmorek, D. R., Jones, M. L., Minns, C. K., & Elder, F. C. (1990). Assessing the potential extent of damage to inland lakes in eastern Canada due to acidic deposition. I. Development and evaluation of a simple ‘site’ model. Canadian Journal of Fisheries Aquatic Science, 47, 55–66.

    Article  CAS  Google Scholar 

  • Marmorek, D. R., MacQueen, R. M., Wedeles, C. H. R., Korman, J., Blancher, P. J., & McNicol, D. K. (1996). Improving pH and alkalinity estimates for regional-scale acidification models: Incorporation of dissolved organic carbon. Canadian Journal of Fisheries Aquatic Science, 53, 1602–1608.

    Article  Google Scholar 

  • Mitchell, T., Carter, T. R., Jones, P. D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Working Paper 55. Tyndall Centre.

    Google Scholar 

  • Nikolaidis, N. P., Rajaram, H., Schnoor, J. L., & Georgakakos, K. P. (1988). A generalized soft water acidification model. Water Resources Research, 24, 1983–1996.

    Article  CAS  Google Scholar 

  • Ouimet, R., Arp, P. A., Watmough, S. A., Aherne, J., & Demarchant, I. (2006). Determination and mapping critical loads of acidity and exceedances for upland forest soils in eastern Canada. Water Air and Soil Pollution, 172, 57–66.

    Article  CAS  Google Scholar 

  • Posch, M., Forsius, M., & Kämäri, J. (1993). Critical loads of sulfur and nitrogen for lakes 1: Model description and estimation of uncertainty. Water Air and Soil Pollution, 66, 173–192.

    Article  CAS  Google Scholar 

  • Posch, M., Kämäri, J., Forsius, M., Henriksen, A., & Wilander, A. (1997). Exceedance of critical loads for lakes in Finland, Norway and Sweden: Reduction requirements for acidifying nitrogen and sulfur deposition. Environmental Management, 21, 291–304.

    Article  Google Scholar 

  • Posch, M., Slootweg, J., & Hettelingh, J.-P. (2011). Modelling critical thresholds and temporal changes of geochemistry and vegetation diversity: CCE Status Report 2011. RIVM Report 680359003. The Netherlands: Coordination Centre for Effects.

    Google Scholar 

  • Posch, M., Aherne, J., Forsius, M., & Rask, M. (2012). Past, present, and future exceedance of critical loads of acidity for surface waters in Finland. Environmental Science & Technology, 46, 4507–4514.

    Article  CAS  Google Scholar 

  • Reuss, J. O. (1980). Simulation of soil nutrient losses resulting from rainfall acidity. Ecological Modelling, 11, 15–38.

    Article  CAS  Google Scholar 

  • Reuss, J. O., & Johnson, D. W. (1986). Acid deposition and the acidification of soils and waters. Germany: Springer-Verlag.

    Google Scholar 

  • Reuss, J. O., Christophersen, N., & Seip, H. M. (1986). A critique of models for freshwater and soil acidification. Water Air and Soil Pollution, 30, 909–930.

    Article  CAS  Google Scholar 

  • RMCC. (1986). Assessment of the state of knowledge on the long-range transport of air pollutants and acid deposition, Part 3: Aquatic effects. Ottawa: Federal/Provincial Research and Monitoring Committee.

    Google Scholar 

  • RMCC. (1990). The 1990 Canadian long-range transport of air pollutants and acid deposition assessment report, part 4: Aquatic effects. Ottawa: Federal/Provincial Research and Monitoring Coordinating Committee.

    Google Scholar 

  • Rose, K. A., Brenkert, A. L., Cook, R. B., Gardner, R. H., & Hettelingh, J.-P. (1991a). Systematic comparison of ILWAS, MAGIC, and ETD watershed acidification models—2. Monte Carlo analysis under regional variability. Water Resources Research, 27, 2591–2603.

    Google Scholar 

  • Rose, K. A., Cook, R. B., Brenkert, A. L., Gardner, R. H., & Hettelingh, J. P. (1991b). Systematic comparison of ILWAS, MAGIC, and ETD watershed acidification models 1. Mapping among model inputs and deterministic results. Water Resources Research, 27, 2577–2589.

    Google Scholar 

  • Schnoor, J. L., Lee, S., Nikolaidis, N. P., & Nair, D. R. (1986). Lake resources at risk to acidic deposition in the eastern United States. Water Air and Soil Pollution, 31, 1091–1101.

    Article  CAS  Google Scholar 

  • Schofield, C. L. (1976). Acid precipitation: Effects on fish. Ambio, 5, 228–230.

    Google Scholar 

  • Scott, K. A., Wissel, B., Gibson, J. J., & Birks, J. S. (2010). Chemical characteristics and acid sensitivity of boreal headwater lakes in northwest Saskatchewan. Journal of Limnology, 69, 33–44.

    Article  Google Scholar 

  • Shaffer, P. W., Rosenbaum, B., Holdren, G. R., Strickland, T. C., McDowell, M. K., Rosenbaum, B., Holdren, G. R., Strickland, T. C., McDowell, M. K., Papp, M., Cassell, D., Hazard, J., & Martin, B. E. (1991). Estimating critical loads of sulfate to surface waters in the northeastern United States: A comparative assessment of three procedures for estimating critical loads of sulfate for lakes, 600-3-91-062. US Environmental Protection Agency.

    Google Scholar 

  • Shiltz, W. W. (1981). Sensitivity of bedrock to acid precipitation: Modification by glacial processes. Paper 81-14. Ottawa: Geological Survey of Canada.

    Google Scholar 

  • Skeffington, R. A. (2006). Quantifying uncertainty in critical loads: (a) literature review. Water Air and Soil Pollution, 169, 3–24.

    Article  CAS  Google Scholar 

  • Slootweg, J., Posch, M., & Hettelingh, J.-P. (2010). Progress in the modelling of critical thresholds and dynamic modelling, including impacts on vegetation in Europe: CCE Status Report 2010. RIVM Report No. 680359001. The Netherlands: Coordination Centre for Effects.

    Google Scholar 

  • Small, M. J., & Sutton, M. C. (1986). A direct distribution model for regional aquatic acidification. Water Resources Research, 22, 1749–1758.

    Article  CAS  Google Scholar 

  • Strang, D., Aherne, J., & Shaw, D. P. (2010). The hydrochemistry of high-elevation lakes in the Georgia Basin, British Columbia. Journal of Limnology, 69, 56–66.

    Article  Google Scholar 

  • Strickland, T. C., Holdren, G. R., Ringold, P. L., Bernard, D., Smythe, K., & Fallon, W. (1993). A national critical loads framework for atmospheric deposition effects assessment I: Method summary. Environmental Management, 17, 329–334.

    Article  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Charles, D. F., & Hemond., H. F. (1996). Influence of organic acids on model projections of lake acidification. Water Air and Soil Pollution, 91, 271–282.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Webb, J. R., Bulger, A. J., Snyder, K. U., Brewer, P. F., Gilbert, E. H., & Moore, D. L. (2004). Regional model projections of future effects of sulfur and nitrogen deposition on streams in the southern Appalachian Mountains. Water Resources Research, 40(2), W02101.

    Article  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Tonnessen, K. A., & Clow, D. W. (2005). Surface water acidification responses and critical loads of sulfur and nitrogen deposition in Loch Vale watershed, Colorado. Water Resources Research, 41, W01021.

    Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Driscoll, C. T., Fernandez, I. J., McDonnell, T. C., Boylen, C. W., Nierzwicki-Bauer, S. A., & Snyder, K. U. (2007). Assessment of the extent to which intensively-studied lakes are representative of the Adirondack region and response to future changes in acidic deposition. Water Air and Soil Pollution, 185, 279–291.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Webb, J. R., Dennis, R. L., Bulger, A. J., & Deviney, F. A. (2008). Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia. Environmental Monitoring and Assessment, 137, 85–99.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., & Jackson, W. A. (2011). Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge province. Journal of Environmental Management, 92, 2953–2960.

    Article  CAS  Google Scholar 

  • Thompson, M. E. (1982). The cation denudation rate as a quantitative index of sensitivity of eastern Canadian rivers to acidic atmospheric precipitation. Water Air and Soil Pollution, 18, 215–226.

    Article  CAS  Google Scholar 

  • Tominaga, K., Aherne, J., Watmough, S. A., Alveteg, M., Cosby, B. J., Driscoll, C. T., & Posch, M. (2009). Voyage without constellation: evaluating the performance of three uncalibrated process-oriented models. Hydrology Research, 40, 261–272.

    Article  CAS  Google Scholar 

  • Tominaga, K., Aherne, J., Watmough, S. A., Alveteg, M., Cosby, B. J., Driscoll, C. T., Posch, M., & Pourmokhtarian, A. (2010). Predicting acidification recovery at the Hubbard Brook Experimental Forest, New Hampshire: Evaluation of four models. Environmental Science & Technology, 44, 9003–9009.

    Article  CAS  Google Scholar 

  • US-Canada. (1983). Memorandum of intent on transboundary air pollution. Report of the impact assessment working group I, Section 3 Aquatic effects.

    Google Scholar 

  • Watt, W. D., Scott, D., & Ray, S. (1979). Acidification and other chemical changes in Halifax County lakes after 21 years. Limnology and Oceanography, 24, 1154–1161.

    Article  CAS  Google Scholar 

  • Whitfield, C. J., Aherne, J., Watmough, S. A., Dillon, P. J., & Clair, T. A. (2006). Recovery from acidification in Nova Scotia: temporal trends and critical loads for 20 headwater lakes. Canadian Journal of Fisheries Aquatic Science, 63, 1504–1514.

    Article  CAS  Google Scholar 

  • Whitfield, C. J., Aherne, J., Watmough, S. A., & Cosby, B. J. (2010). Modelling catchment response to acid deposition: A regional dual application of the MAGIC model to soils and lakes in the Athabasca Oil Sands region, Alberta. Journal of Limnology, 69, 147–160.

    Article  Google Scholar 

  • Wolniewicz, M. B., Aherne, J., & Dillon, P. J. (2011). Acid sensitivity of lakes in Nova Scotia, Canada: Assessment of lakes at risk. Ecosystems, 14, 1249–1263.

    Article  CAS  Google Scholar 

  • Zbieranowski, A. L., & Aherne, J. (2011). Long-term trends in atmospheric reactive nitrogen across Canada: 1988–2007. Atmospheric Environment, 45, 5853–5862.

    Article  CAS  Google Scholar 

  • Zhai, J., Driscoll, C. T., Sullivan, T. J., & Cosby, B. J. (2008). Regional application of the PnET-BGC model to assess historical acidification of Adirondack lakes. Water Resources Research, 44, W01421.

    Article  Google Scholar 

  • Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., & Gong, S. (2002). Modelling gaseous dry deposition in AURAMS: A unified regional air-quality modelling system. Atmospheric Environment, 36, 537–560.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was undertaken, in part, thanks to funding from the Canada Research Chairs Program, and an NSERC Discovery grant. In addition, it was financially supported by the Government of Canada through the Federal Department of the Environment (Project: Forest ecosystem critical loads).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Aherne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aherne, J., Jeffries, D. (2015). Critical Load Assessments and Dynamic Model Applications for Lakes in North America. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_19

Download citation

Publish with us

Policies and ethics