Skip to main content

Assessment of Critical Loads of Acidity and Their Exceedances for European Lakes

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Abstract

Lake acidification in northern Europe provided some of the key impetus for the development of the critical loads approach during the 1980s. While major reductions in acidic deposition have been achieved during the last 20 years, through the application of this approach, regions with continued acidification and critical load exceedance persist around Europe. This chapter describes regional applications of the First-order Acidity Balance (FAB) model in five European countries, highlighting national approaches to lake surveys and regional representation, and how the model has been adapted in each of these countries. We discuss the implications of interpreting critical load exceedances, and provide an overall synthesis of freshwater exceedance in Europe using common European deposition data. Despite uncertainties within the FAB model, such as the parameterisation of nitrogen immobilisation and denitrification, a coherent picture of the spatial extent of acidification within European lakes is evident. The ongoing failure to meet critical loads by 2020 demonstrates that lake acidification is still a current, not a historical, problem in Europe, and under current legislation many lakes will remain more acidic than their pre-industrial reference condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology & Evolution, 7, 220–224.

    Article  CAS  Google Scholar 

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.

    Article  Google Scholar 

  • Ågren, G. I., & Bosatta, E. (1988). Nitrogen saturation of terrestrial ecosystems. Environmental Pollution, 54, 185–197.

    Article  Google Scholar 

  • Aherne, J., & Curtis, C. J. (2003). Critical loads of acidity for Irish lakes. Aquatic Sciences, 65, 21–35.

    Article  CAS  Google Scholar 

  • Aherne, J., Kelly-Quinn, M., & Farrell, E. P. (2002). A survey of lakes in the Republic of Ireland: Hydrochemical characteristics and acid sensitivity. Ambio, 31, 452–459.

    Google Scholar 

  • Aherne, J., Posch, M., Forsius, M., Vuorenmaa, J., Tamminen, P., Holmberg, M., & Johansson, M. (2008). Modelling the hydrogeochemistry of acid-sensitive catchments in Finland under ­atmospheric deposition and biomass harvesting scenarios. Biogeochemistry, 88, 233–256.

    Article  CAS  Google Scholar 

  • Aherne, J., Posch, M., Forsius, M., Lehtonen, A., & Härkönen, K. (2012). Impacts of forest ­biomass removal on soil nutrient status under climate change: A catchment-based modelling study for Finland. Biogeochemistry, 107, 471–488.

    Article  Google Scholar 

  • Baker, L. A., & Brezonik, P. L. (1988). Dynamic model of in-lake alkalinity generation. Water Resources Research, 24, 65–74.

    Article  CAS  Google Scholar 

  • Battarbee, R. W., Flower, R. J., Stevenson, A. C., & Rippey, B. (1985). Lake acidification in ­Galloway: A palaeoecological test of competing hypotheses. Nature, 314, 350–352.

    Article  CAS  Google Scholar 

  • Brakke, D. F., Henriksen, A., & Norton, S. A. (1990). A variable F-factor to explain changes in base cation concentrations as a function of strong acid deposition. Verhandlungen des ­Internationalen Verein Limnologie, 24, 146–149.

    Google Scholar 

  • Bringmark, L. (1977). A bioelement budget of an old Scots pine forest in central Sweden. Silva Fennica, 11, 201–209.

    Google Scholar 

  • Brown, D. J. A. (1988). Effect of atmospheric N deposition on surface water chemistry and the implications for fisheries. Environmental Pollution, 54, 275–284.

    Article  CAS  Google Scholar 

  • Burton, A. W., & Aherne, J. (2012). Changes in the chemistry of small Irish lakes. Ambio, 41, 170–179.

    Article  CAS  Google Scholar 

  • CLAG, Critical Loads Advisory Group. (1995). Critical loads of acid deposition for United ­Kingdom freshwaters. London: ITE Edinburgh/Department of the Environment.

    Google Scholar 

  • COFORD. (1994). Pathway to progress: A programme for forest research and development. ­National Council for Forest Research and Development, University College Dublin.

    Google Scholar 

  • Curtis, C., & Simpson, G. (2011). Freshwater Umbrella: The effects of nitrogen deposition on freshwaters in the UK. (Report to DEFRA under Contract AQ0803. ECRC Research Report No. 152). London: University College London.

    Google Scholar 

  • Curtis, C. J., Allott, T. E. H., Reynolds, B., & Harriman, R. (1998). The prediction of nitrate ­leaching with the first-order acidity balance (FAB) model for upland catchments in Great ­Britain. Water Air and Soil Pollution, 105, 205–215.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Allott, T. E. H., Hughes, M., Hall, J., Harriman, R., Helliwell, R., Kernan, M., ­Reynolds, B., & Ullyett, J. (2000). Critical loads of sulphur and nitrogen for freshwaters in Great Britain and assessment of deposition reduction requirements with the First-order Acidity Balance (FAB) model. Hydrology and Earth System Sciences, 4, 1–15.

    Article  Google Scholar 

  • Curtis, C. J., Evans, C., Helliwell, R. C., & Monteith, D. (2005a). Nitrate leaching as a ­confounding factor in chemical recovery from acidification in UK upland waters. Environmental ­Pollution, 137, 73–82.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Botev, I., Camarero, L., Catalan, J., Cogalniceanu, D., Hughes, M., Kernan, M., Kopáček, J., Korhola, A., Psenner, R., Rogora, M., Stuchlík, E., Veronesi, M., & Wright, R. F. (2005b). Acidification in European mountain lake districts: A regional assessment of critical load exceedance. Aquatic Sciences, 67, 237–251.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Emmett, B. A., Reynolds, B., & Shilland, J. (2006). How important is N2O production in removing atmospherically deposited nitrogen from UK moorland catchments? Soil Biology and Biochemistry, 38, 2081–2091.

    Article  CAS  Google Scholar 

  • Curtis, C. J., Heaton, T. H. E., Simpson, G. L., Evans, C. D., Shilland, J., & Turner, S. (2012). Dominance of biologically produced nitrate in upland waters of Great Britain indicated by stable isotopes. Biogeochemistry, 111, 535–554.

    Article  CAS  Google Scholar 

  • Dillon, P. J., & Molot, L. A. (1990). The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry, 11, 23–43.

    Article  Google Scholar 

  • Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to ­nitrogen deposition. Forest Ecology and Management, 71, 153–161.

    Article  Google Scholar 

  • Emmett, B. A., & Reynolds, B. (1996). Nitrogen critical loads for spruce plantations in Wales: Is there too much nitrogen? Forestry, 69, 205–214.

    Article  Google Scholar 

  • Evans, C. D., Chadwick, T., Norris, D., Rowe, E. C., Heaton, T. H. E., Brown, P., & Battarbee, R. W. (2014). Persistent surface water acidification in an organic soil-dominated upland region subject to high atmospheric deposition: The North York Moors, UK. Ecological Indicators, 37, 304–316.

    Article  CAS  Google Scholar 

  • Finér, L. (1989). Biomass and nutrient cycle in fertilized and unfertilized pine, mixed birch and pine and spruce stands on a drained mire. Acta Forestalia Fennica, 208, 3–19.

    Google Scholar 

  • Finér, L., & Brække, F. H. (1991). Understorey vegetation on three ombrotrophic pine bogs and the effects of NPK and PK fertilization. Scandinavian Journal of Forest Research, 6, 113–128.

    Article  Google Scholar 

  • Flower, R. J., & Battarbee, R. W. (1983). Diatom evidence for recent acidification of two Scottish lochs. Nature, 305, 130–133.

    Article  CAS  Google Scholar 

  • Fölster, J., Andren, C., Bishop, K., Buffam, I., Cory, N., Goedkoop, W., Holmgren, K., ­Johnson, R., Laudon, H., & Wilander, A. (2007). A novel environmental quality criterion for ­acidification in Swedish lakes—an application of studies on the relationship between biota and water ­chemistry. Water Air and Soil Pollution: Focus, 7, 331–338.

    Article  Google Scholar 

  • Fölster, J., Köhler, S., von Brömsen, C., Akselsson, C., & Rönnback, P. (2011). Korrigering av vattenkemi för kalkningspåverkan—val av referenser och beräkning av osäkerheter. Institutionen för vatten och miljö (in Swedish). (Rapport 2011:1). SLU.

    Google Scholar 

  • Forsius, M., Malin, V., Mäkinen, I., Mannio, J., Kämäri, J., Kortelainen, P., & Verta, M. (1990). Finnish lake acidification survey: Survey design and random selection of lakes. Environmetrics, 1, 73–88.

    Article  Google Scholar 

  • Forsius, M., Kämäri, J., & Posch, M. (1992). Critical loads for Finnish lakes: Comparison of three steady-state models. Environmental Pollution, 77, 185–193.

    Article  CAS  Google Scholar 

  • Frogner, T., Wright, R. F., Cosby, B. J., & Esser, J. M. (1994). Maps of critical loads and ­exceedances for sulphur and nitrogen to forest soils in Norway. (Naturens Tålegrenser Fagrapport 56). Oslo: Ministry of Environment.

    Google Scholar 

  • Grandin, U. (2007). Strategier för urval av sjöar som ska ingå i den sexåriga omdrevsinventeringen av vattenkvalitet i svenska sjöar (in Swedish). (Rapport 2007:10). Institutionen för Miljöanalys, SLU.

    Google Scholar 

  • Green, S., & Fealy, R. (2010). Teagasc’s national landcover and habitat maps. TResearch, 5, 14–15.

    Google Scholar 

  • Grennfelt, P., & Hultberg, H. (1986). Effects of nitrogen deposition on the acidification of ­terrestrial and aquatic ecosystems. Water Air and Soil Pollution, 30, 945–963.

    Article  CAS  Google Scholar 

  • Gundersen, P., Emmet, B. A., Kjønaas, O. J., Koopmans, C., & Tietema, A. (1998). Impact of ­nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest ­Ecology and Management, 101, 37–55.

    Article  Google Scholar 

  • Hall, J. (2008). Status of UK critical loads and exceedances June 2008. http://cldm.defra.gov.uk/PDFs/uk_status_jun08.pdf. Accessed 1 June 2012.

  • Hall, J., Hornung, M., Freer-Smith, P., Loveland, P., Bradley, I., Langan, S., Dyke, H., Gascoigne, J., & Bull, K. (1997). Current status of UK critical loads data—December 1996. ITE Monks Wood, UK.

    Google Scholar 

  • Henriksen, A. (1984). Changes in base cation concentrations due to freshwater acidification. Verhandlungen des Internationalen Verein Limnologie, 22, 692–698.

    CAS  Google Scholar 

  • Henriksen, A. (1995). Critical loads of acidity to surface waters—how important is the F-factor in the SSWC method? Water Air and Soil Pollution, 85, 2437–2441.

    Article  CAS  Google Scholar 

  • Henriksen, A. (1998). Application of the first-order acidity balance (FAB) model to Norwegian surface waters. (Report SNO 3809-98). Oslo: Norwegian Institute for Water Research (NIVA).

    Google Scholar 

  • Henriksen, A., & Brakke, D. F. (1988). Increasing contributions of nitrogen to the acidity of surface waters in Norway. Water Air & Soil Pollution, 42, 183–201.

    Article  CAS  Google Scholar 

  • Henriksen, A., & Posch, M. (2001). Steady-state models for calculating critical loads of acidity for surface waters. Water Air & Soil Pollution: Focus, 7, 375–398.

    Article  Google Scholar 

  • Henriksen, A., Kämäri, J., Posch, M., Lövblad, G., Forsius, M., & Wilander, A. (1990). Critical loads to surface waters in Fennoscandia—Intra- and inter-grid variability of critical loads and their exceedance. (Nord 1990:124). Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Henriksen, A., Kämäri, J., Posch, M., & Wilander, A. (1992). Critical loads of acidity: Nordic surface waters. Ambio, 21, 356–363.

    Google Scholar 

  • Henriksen, A., Forsius, M., Kämäri, J., Posch, M., & Wilander, A. (1993). Exceedance of ­critical loads for lakes in Finland, Norway and Sweden: Reduction requirements for nitrogen and ­sulfur deposition. (Report 2841). Oslo, Norway: Norwegian Institute for Water Research.

    Google Scholar 

  • Henriksen, A., Posch, M., Hultberg, H., & Lien, L. (1995). Critical loads of acidity for surface ­waters—Can the ANClimit be considered variable? Water Air and Soil Pollution, 85, 2419–2424.

    Article  CAS  Google Scholar 

  • Hesthagen, T., Fjellheim, A., Schartau, A. K., Wright, R. F., Saksgård, R., & Rosseland, B. O. (2011). Chemical and biological recovery of Lake Saudlandsvatn, a formerly highly acidified lake in southernmost Norway, in response to decreased acid deposition. Science of the Total Environment, 409, 2908–2916.

    Article  CAS  Google Scholar 

  • ICP Integrated Monitoring. (2004). ICP IM manual: Procedure for calculating biomass and ­bioelements. Helsinki: Finnish Environment Institute (www.ymparisto.fi/default.asp?contentid=96947&lan=EN).

    Google Scholar 

  • INDITE. (1994). Impacts of nitrogen deposition in terrestrial ecosystems. (United Kingdom ­Review Group on Impacts of Nitrogen Deposition on Terrestrial Ecosystems (INDITE)). ­London: Department of the Environment.

    Google Scholar 

  • Jensen, K. W., & Snekvik, E. (1972). Low pH levels wipe out Salmon and Trout populations in southernmost Norway. Ambio, 1, 223–225.

    Google Scholar 

  • Johnson, R. K., & Angeler, D. G. (2010). Tracing recovery under changing climate: Response of phytoplankton and invertebrate assemblages to decreased acidification. Journal of the North American Benthological Society, 29, 1472–1490.

    Article  Google Scholar 

  • Kämäri, J., Forsius, M., Kortelainen, P., Mannio, J., & Verta, M. (1991). Finnish lake survey: ­Present status of acidification. Ambio, 20, 23–27.

    Google Scholar 

  • Kämäri, J., Forsius, M., & Posch, M. (1993). Critical loads of sulfur and nitrogen for lakes II: Regional extent and variability in Finland. Water Air & Soil Pollution, 66, 77–96.

    Article  Google Scholar 

  • Kärkkäinen, L., Matala, J., Härkönen, K., Kellomäki, S., & Nuutinen, T. (2008). Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy, 32, 934–943.

    Article  Google Scholar 

  • Kaste, Ø., & Dillon, P. J. (2003). Inorganic nitrogen retention in acid-sensitive lakes in southern Norway and southern Ontario, Canada—a comparison of mass balance data with an empirical N retention model. Hydrological Processes, 17, 2393–2407.

    Article  Google Scholar 

  • Kaste Ø. Henriksen A., & Posch M. (2002). Present and potential nitrogen outputs from ­Norwegian soft water lakes—an assessment made by applying the steady-state First-order Acidity Balance (FAB) model. Hydrology and Earth System Sciences, 6, 101–112.

    Article  Google Scholar 

  • Kauppi, P., Anttila, P., & Kenttämies, K. (Eds.). (1990). Acidification in Finland. Berlin: Springer.

    Google Scholar 

  • Kernan, M., Battarbee, R. W., Curtis, C. J., Monteith, D. T., & Shilland, E. M. (2010). UK acid ­waters monitoring network 20 year interpretive report. (ECRC Research Report #141). ­London: University College London.

    Google Scholar 

  • Kortelainen, P. (1993). Content of total organic carbon in Finnish lakes and its relationship to ­catchment characteristics. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1477–1483.

    Article  CAS  Google Scholar 

  • Kortelainen, P., Mannio, J., Forsius, M., Kämäri, J., & Verta, M. (1989). Finnish lake survey: The role of organic and anthropogenic acidity. Water Air & Soil Pollution, 46, 235–249.

    CAS  Google Scholar 

  • Kreiser, A. M., Patrick, S. T., Battarbee, R. W., Hall, J., & Harriman, R. (1995). Mapping water chemistry. In CLAG Freshwaters (Ed.). Critical loads of acid deposition for United Kingdom freshwaters (pp. 15–18). London: Department of the Environment.

    Google Scholar 

  • Larssen, T., Høgåsen, T., & Wright, R. F. (2005). Target loads for acidification of Norwegian surface waters. (NIVA-Report 5099-2005). Oslo: Norwegian Institute for Water Research.

    Google Scholar 

  • Larssen, T., Lund, E., & Høgåsen, T. (2008). Exceedance of critical loads for aciddification and nitrogen for Norway—update for the period 2002-2006. (NIVA-report 5697-2008). Oslo: ­Norwegian Institute for Water Research.

    Google Scholar 

  • Lien, L., Raddum, G. G., Fjellheim, A., & Henriksen, A. (1996). A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and ­invertebrate ­responses. Science of the Total Environment, 177, 173–193.

    Article  CAS  Google Scholar 

  • Lydersen, E., Larssen, T., & Fjeld, E. (2004). The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. ­Science of the Total Environment, 326, 63–69.

    Article  CAS  Google Scholar 

  • Mälkönen, E. (1977). Annual primary production and nutrient cycle in birch stands. Communicationes Instituti Forestalis Fenniae, 91, 1–35.

    Google Scholar 

  • Moldan, F., Kronnäs, V., Wilander, A., Karltun, E., & Cosby, B. J. (2004). Modelling acidification and recovery of Swedish lakes. Water Air & Soil Pollution: Focus, 4, 139–160.

    Article  CAS  Google Scholar 

  • Odén, S. (1968). The acidification of air precipitation and its consequences in the natural environment. (Energy Committee Bulletin 1). Stockholm: Swedish Natural Sciences Research Council.

    Google Scholar 

  • Oulehle, F., Cosby, B. J., Wright, R. F., Hruška, J., Kopáček, J., Krám, P., Evans, C. D., & Moldan, F. (2012). Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environmental Pollution, 165, 158–166.

    Article  CAS  Google Scholar 

  • Posch, M., Forsius, M., & Kämäri, J. (1993). Critical loads of sulfur and nitrogen for lakes 1: Model description and estimation of uncertainty. Water Air Soil & Pollution, 66, 173–192.

    Article  CAS  Google Scholar 

  • Posch, M., Kämäri, J., Forsius, M., Henriksen, A., & Wilander, A. (1997). Exceedance of ­critical loads for lakes in Finland, Norway and Sweden: Reduction requirements for acidifying ­nitrogen and sulfur deposition. Environmental Management, 21, 291–304.

    Article  Google Scholar 

  • Posch, M., Hettelingh, J.-P., & De Smet, P. A. M. (2001). Characterization of critical load ­exceedances in Europe. Water Air and Soil Pollution, 130, 1139–1144.

    Article  Google Scholar 

  • Posch, M., Eggenberger, U., Kurz, D., & Rihm, B. (2007). Critical loads of acidity for alpine lakes. A weathering rate calculation model and the generalized First-order Acidity Balance (FAB) model applied to alpine lake catchments. (Environmental Studies 0709). Berne: Federal Office for the Environment.

    Google Scholar 

  • Posch, M., Aherne, J., Forsius, M., & Rask, M. (2012). Past, present, and future exceedance of critical loads of acidity for surface waters in Finland. Environmental Science & Technology, 46, 4507–4514.

    Article  CAS  Google Scholar 

  • Rapp, L., & Bishop, K. (2009). Surface water acidification and critical loads: Exploring the ­F-factor. Hydrology and Earth System Sciences, 13, 2191–2201.

    Article  CAS  Google Scholar 

  • Rapp, L., Wilander, A., & Bertills, U. (2002). Kritisk belastning för försurning av sjöar. In Kritisk belastning för svavel och kväve (In Swedish) (pp. 81–106). Report 5174. Swedish ­Environmental Protection Agency.

    Google Scholar 

  • Redsven, V., Anola-Pukkila, A., Haara, A., Hirvelä, H., Härkönen, K., Kettunen, L., Kiiskinen, A., Kärkkäinen, L., Lempinen, R., Muinonen, E., Nuutinen, T., Salminen, O., & Siitonen, M. (2004). MELA2002 reference manual (2nd ed.). Helsinki: Finnish Forest Research Institute.

    Google Scholar 

  • Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long-term development of acid ­deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth ­System Sciences, 7, 436–446.

    Article  Google Scholar 

  • Seip, H. M. (1980). Acidification of freshwater—sources and mechanisms. In D. Drabløs & A. Tollan (Eds.), Ecological impact of acid precipitation (pp. 358–365). Oslo: Proceedings of an international conference (Sandefjord, Norway, March 11–14, 1980, SNSF Project).

    Google Scholar 

  • SEPA. (2010). Status, potential and quality requirements for lakes, watercourses, coastal and transitional waters (Vol. 4) (Handbook 2007). Stockholm: Swedish Environmental Protection Agency.

    Google Scholar 

  • Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyiri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., & Wind, P. (2012). The EMEP MSC-W chemical transport model—technical description. Atmospheric Chemistry and Physics, 12, 7825–7865.

    Article  CAS  Google Scholar 

  • Skeffington, R. A., & Wilson, E. J. (1988). Excess nitrogen deposition. Environmental Pollution, 54, 159–184.

    Article  CAS  Google Scholar 

  • Skjelkvåle, B. L., Henriksen, A., Faafeng, B., Fjeld, E., Traaen, T. S., Lien, L., Lydersen, E., & Buan, A. K. (1996). Regional innsjøundersøkelse 1995. En vannkjemisk undersøkelse av 1500 norske innsjøer. (Report 677/96). Oslo: Statens Forurensningstilsyn.

    Google Scholar 

  • Slootweg, J., Posch, M., & Hettelingh, J.-P. (2010). Progress in the modelling of critical thresholds and dynamic modelling, including impacts on vegetation in Europe: CCE Status Report 2010. (RIVM Report No. 680359001). The Netherlands: Coordination Centre for Effects.

    Google Scholar 

  • Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: Its causes and aquatic consequences. In L. A. Baker (Ed.). Environmental chemistry of lakes and reservoirs (pp. 223–284). Washington, DC: American Chemical Society.

    Google Scholar 

  • Sullivan, T. J., Eilers, J. M., Cosby, B. J., & Vaché, K. B. (1997). Increasing role of nitrogen in the acidification of surface waters in the Adirondack mountains, New York. Water Air & Soil Pollution, 95, 313–336.

    CAS  Google Scholar 

  • Tarrasón, L., Jonson, J. E., Fagerli, H., Benedictow, A., Wind, P., Simpson, D., & Klein, H. (2003). Transboundary acidification and eutrophication and ground level ozone in Europe Part III: Source-receptor relationships. (EMEP Status Report 1/03). Oslo: Norwegian Meteorological Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Curtis .

Editor information

Editors and Affiliations

Conclusions

Conclusions

National scale applications of the FAB model provide maps of critical load exceedance which are highly consistent with areas of known acidification, as verified by independent chemical and biological monitoring studies, despite simplifications and uncertainties associated with steady-state models and critical limits (Chap. 2). Furthermore, many studies do show a strong relationship between increasing surface water ANC or pH and biological recovery (e.g. Hesthagen et al. 2011; Johnson and Angeler 2010; Kernan et al. 2010; Posch et al. 2012). In Finland, recovery in recruitment of perch populations matches well with reduced exceedance of critical loads (Posch et al. 2012). At long-term monitoring sites in the UK Acid Waters Monitoring Network, the re-appearance of acid-sensitive macrophytes and invertebrates has been linked to improvements in ANC with evidence that the critical ANC value of 20 µeq l−1 does indeed represent an important ecological threshold for some species (Kernan et al. 2010). Similar results were found in a Norwegian lake study where the achievement of critical load and ANC > 20 µeq−1 coincided with significant recovery in brown trout and invertebrate species (­Hesthagen et al. 2011). Swedish studies comparing acidified but recovering lakes with unimpacted ­reference lakes showed a movement of impacted phytoplankton and invertebrate assemblages towards those of reference lakes as pH of acidified lakes increased over 20 years (Johnson and Angeler 2010).

Hence the continued exceedance of FAB critical loads beyond 2020 in all five countries included here is a cause for concern as planned emission reductions under the recently revised Gothenburg Protocol do not go far enough. Critical load ­models like FAB evidently still have a role to play in shaping emissions policy for the ­protection of aquatic ecosystems. However, as emissions reductions become ever more expensive to achieve, the areas of uncertainty will face increasing ­scrutiny. The role of chemical and biological monitoring programmes will be critical in providing the supporting data against which model performance can be evaluated.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Curtis, C. et al. (2015). Assessment of Critical Loads of Acidity and Their Exceedances for European Lakes. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_17

Download citation

Publish with us

Policies and ethics