Skip to main content

Rodent Transplantation Medicine

  • Chapter
  • First Online:
Rodent Transplant Medicine
  • 679 Accesses

Abstract

With a rapid advance of surgical instruments and modern healthcare quality, today clinical transplant surgeries are frequently and successfully performed over the past few decades. Nevertheless, microsurgical techniques are still required particularly for medical students and clinical surgical residencies. A microsurgery laboratory is suggested to provide a platform to set up a formal training program (Kizilisik et al. 1998), in which many clinical scenarios can be mimicked. More importantly, clinically relevant transplant models may be established in large measures to allow us to decipher underlying mechanisms of immunologic (innate, adaptive immunities, and signaling pathways) or nonimmunologic factors (effect of body weight, gender, ischemia-reperfusion, hypertension, and drug toxicity) although limitations of animal model exist in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A. Laboratory animals: the Renaissance rat. Nature. 2004;428(6982):464–6.

    Article  PubMed  CAS  Google Scholar 

  • Aebischer P, Lacy PE, Gerasimidi-Vazeou A, Hauptfeld V. Production of marked prolongation of islet xenograft survival (rat to mouse) by local release of mouse and rat antilymphocyte sera at transplant site. Diabetes. 1991;40(4):482–5.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin 3rd WM, Cohen N, Hrapchak BB. Prolonged survival of murine skin grafted across a weak histocompatibility barrier as a function of skin-grafting technique. Transplantation. 1973;15(4):419–22.

    Article  PubMed  Google Scholar 

  • Batiuk TD, Urmson J, Vincent D, Yatscoff RW, Halloran PF. Quantitating immunosuppression. Estimating the 50% inhibitory concentration for in vivo cyclosporine in mice. Transplantation. 1996;61(11):1618–24.

    Article  PubMed  CAS  Google Scholar 

  • Bedi DS, Riella LV, Tullius SG, Chandraker A. Animal models of chronic allograft injury: contributions and limitations to understanding the mechanism of long-term graft dysfunction. Transplantation. 2010;90(9):935–44.

    Article  PubMed  Google Scholar 

  • Chen JS, Chiu HC, Hsu CJ, Liu CY, Hsieh PC, Miaw SC, Yu HS, Wang LF. Low-energy visible light irradiation modulates immune responses induced by epicutaneous sensitization with protein antigen. J Invest Dermatol. 2009;129(9):2258–64.

    Article  PubMed  CAS  Google Scholar 

  • Fealy MJ, Umansky WS, Bickel KD, Nino JJ, Morris RE, Press BH. Efficacy of rapamycin and FK 506 in prolonging rat hind limb allograft survival. Ann Surg. 1994;219(1):88–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ge F, Gong W. Strategies for successfully establishing a kidney transplant in a mouse model. Exp Clin Transplant. 2011;9(5):287–94.

    PubMed  Google Scholar 

  • Gong W, Thornley T, Whitcher GH, Ge F, Yuan S, Liu DJ, Balasubramanian S. Introduction of modified cervical cardiac transplant model in mice. Exp Clin Transplant. 2012;10(2):158–62.

    Article  PubMed  Google Scholar 

  • Jacobson 2nd JH, Wallman LJ, Schumacher GA, Flanagan M, Suarez EL, Donaghy RM. Microsurgery as an aid to middle cerebral artery endarterectomy. Microsurgery. 1992;13(3):112–7; discussion 117–8.

    Article  PubMed  Google Scholar 

  • Jones ND, Turvey SE, Van Maurik A, Hara M, Kingsley CI, Smith CH, Mellor AL, Morris PJ, Wood KJ. Differential susceptibility of heart, skin, and islet allografts to T cell-mediated rejection. J Immunol. 2001;166(4):2824–30.

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Lim DG, Wee YM, Kim JH, Yun CO, Choi MY, Park YH, Kim SC, Han DJ. Viral IL-10 gene transfer prolongs rat islet allograft survival. Cell Transplant. 2008;17(6):609–18.

    Article  PubMed  Google Scholar 

  • Kizilisik A, al Sebayel M, Ramirez CB. Microsurgery training for transplantation research purposes. Transplant Proc. 1998;30(7):3016.

    Article  PubMed  CAS  Google Scholar 

  • Kunugi S, Shimizu A, Ishii E, Kuwahara N, Arai T, Kataoka M, Masuda Y, Nagasaka S, Fukuda Y. The pathological characteristics of acute antibody-mediated rejection in DA-to-Lewis rat orthotopic liver transplantation. Transplant Proc. 2011;43(7):2737–40.

    Article  PubMed  CAS  Google Scholar 

  • Kwun J, Malarkannan S, Burlingham WJ, Knechtle SJ. Primary vascularization of the graft determines the immunodominance of murine minor H antigens during organ transplantation. J Immunol. 2011;187(8):3997–4006.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lechler RI, Sykes M, Thomson AW, Turka LA. Organ transplantation–how much of the promise has been realized? Nat Med. 2005;11(6):605–13.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Strom TB. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med. 1999;5(11):1298–302.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad-Toh K. Genome sequencing: three's company. Nature. 2004;428(6982):475–6.

    Article  PubMed  CAS  Google Scholar 

  • Martins PN. Learning curve, surgical results and operative complications for kidney transplantation in mice. Microsurgery. 2006;26(8):590–3.

    Article  PubMed  Google Scholar 

  • Martins PN, Montero EF. Organization of a microsurgery laboratory. Acta Cir Bras. 2006;21(3):187–9.

    Article  PubMed  Google Scholar 

  • Medawar PB. The behaviour and fate of skin autografts and skin homografts in rabbits: a report to the War Wounds Committee of the Medical Research Council. J Anat. 1944;78(Pt 5):176–99.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miyazawa H, Murase N, Demetris AJ, Matsumoto K, Nakamura K, Ye Q, Manez R, Todo S, Starzl TE. Hamster to rat kidney xenotransplantation. Effects of FK 506, cyclophosphamide, organ perfusion, and complement inhibition. Transplantation. 1995;59(8):1183–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murase N, Starzl TE, Demetris AJ, Valdivia L, Tanabe M, Cramer D, Makowka L. Hamster-to-rat heart and liver xenotransplantation with FK506 plus antiproliferative drugs. Transplantation. 1993;55(4):701–7; discussion 707–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Noris M, Cugini D, Casiraghi F, Azzollini N, De Deus Viera Moraes L, Mister M, Pezzotta A, Cavinato RA, Aiello S, Perico N, Remuzzi G. Thymic microchimerism correlates with the outcome of tolerance-inducing protocols for solid organ transplantation. J Am Soc Nephrol. 2001;12(12):2815–26.

    PubMed  CAS  Google Scholar 

  • Obhrai JS, Oberbarnscheidt M, Zhang N, Mueller DL, Shlomchik WD, Lakkis FG, Shlomchik MJ, Kaplan DH. Langerhans cells are not required for efficient skin graft rejection. J Invest Dermatol. 2008;128(8):1950–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pichierri A, Frati A, Santoro A, Lenzi J, Delfini R, Pannarale L, Gaudio E, D'Andrea G, Cantore GP. How to set up a microsurgical laboratory on small animal models: organization, techniques, and impact on residency training. Neurosurg Rev. 2009;32(1):101–10; discussion 110.

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Guan HG, Zhou XJ, Yin J, Lan J, Qian HX. Blockade of 4-1BB/4-1BB ligand interactions prevents acute rejection in rat liver transplantation. Chin Med J (Engl). 2010;123(2):212–5.

    CAS  Google Scholar 

  • Redaelli CA, Wagner M, Tien YH, Mazzucchelli L, Stahel PF, Schilling MK, Dufour JF. 1 alpha,25-Dihydroxycholecalciferol reduces rejection and improves survival in rat liver allografts. Hepatology. 2001;34(5):926–34.

    Article  PubMed  CAS  Google Scholar 

  • Saat RE, de Bruin RW, Heineman E, Jeekel J, Marquet RL. Total orthotopic allogeneic small bowel transplantation in rats: effect of allograft irradiation combined with cyclosporine-A therapy. Gut. 1991;32(6):654–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakagami K. Early prediction of acute rejection after inbred rat kidney transplantation using macrophage migration inhibition test. Acta Med Okayama. 1976;30(3):181–95.

    PubMed  CAS  Google Scholar 

  • Schwoebel F, Barsig J, Wendel A, Hamacher J. Quantitative assessment of mouse skin transplant rejection using digital photography. Lab Anim. 2005;39(2):209–14.

    Article  PubMed  CAS  Google Scholar 

  • Steinmuller D. Skin allograft rejection by stable hematopoietic chimeras that accept organ allografts sill is an enigma. Transplantation. 2001;72(1):8–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Tay SS, Tran GT, Hodgkinson SJ, Allen RD, Hall BM, McCaughan GW, Sharland AF, Bishop GA. Donor IL-4-treatment induces alternatively activated liver macrophages and IDO-expressing NK cells and promotes rat liver allograft acceptance. Transpl Immunol. 2010;22(3–4):172–8.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Geissler EK, Fechner Jr JH, Burlingham WJ, Knechtle SJ. Use of donor serum to prevent passive transfer of hyperacute rejection. J Surg Res. 1994;57(1):150–5.

    Article  PubMed  CAS  Google Scholar 

  • Wang LF, Chiu HC, Hsu CJ, Liu CY, Hsueh YH, Miaw SC. Epicutaneous sensitization with a protein antigen induces Th17 cells. J Dermatol Sci. 2009;54(3):192–7.

    Article  PubMed  CAS  Google Scholar 

  • Wehner JR, Morrell CN, Rodriguez ER, Fairchild RL, Baldwin 3rd WM. Immunological challenges of cardiac transplantation: the need for better animal models to answer current clinical questions. J Clin Immunol. 2009;29(6):722–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Li H, Jiang N, Wang GY, Fu BS, Wang GS, Yang Y, Chen GH. Inhibition of rejection in murine islet xenografts by CTLA4Ig and CD40LIg gene transfer. Chin Med J (Engl). 2010;123(21):3106–9.

    Google Scholar 

  • Zhang XG, Lu Y, Wang B, Li H, Yu L, Liu C, Wu Z, Liu XM. Cytokine production during the inhibition of acute vascular rejection in a concordant hamster-to-rat cardiac xenotransplantation model. Chin Med J (Engl). 2007;120(2):145–9.

    CAS  Google Scholar 

  • Zhang Z, Zhu L, Quan D, Garcia B, Ozcay N, Duff J, Stiller C, Lazarovits A, Grant D, Zhong R. Pattern of liver, kidney, heart, and intestine allograft rejection in different mouse strain combinations. Transplantation. 1996;62(9):1267–72.

    Article  PubMed  CAS  Google Scholar 

  • Zhong R. Organ transplantation in mice: current status and future prospects. Microsurgery. 1999;19(2):52–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Gong MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gong, W. (2015). Rodent Transplantation Medicine. In: Gong, W. (eds) Rodent Transplant Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9472-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9472-5_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9471-8

  • Online ISBN: 978-94-017-9472-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics