Campylobacter: Animal Reservoirs, Human Infections, and Options for Control

  • Jaap A. WagenaarEmail author
  • Diane G. Newell
  • Ruwani S. Kalupahana
  • Lapo Mughini-Gras


Campylobacteriosis is a frequently diagnosed disease in humans. Most infections are considered food-borne and are caused by Campylobacter jejuni and C. coli. The animal reservoirs of these Campylobacter, and the sources and routes of transmission, are described and discussed. Most warm-blooded animals can be colonized by Campylobacter, but avians, and in particular poultry, are preferred hosts. Much of the world’s poultry production is colonized by Campylobacter. Source attribution studies estimate that 20–40 % of cases are attributed to the handling and consumption of chicken meat, while up to 80 % of cases are due to Campylobacter found in the chicken reservoir. The difference suggests that routes other than through the food chain, i.e. environmental contamination, are important. Thus the most effective interventions would be targeted to primary production. To date, only improved biosecurity is available. If effectively implemented strict biosecurity can reduce the number of Campylobacter-positive flocks, but implementation to this level has proved difficult for the poultry industry. Available interventions in chicken processing plants can substantially reduce Campylobacter numbers on carcasses and consequently reduce the risk to humans. Public health strategies therefore utilize control programs, which aim at reducing the level of Campylobacter by measures along the food chain. It is now recognized that commercially acceptable complementary interventions for primary production, such as vaccines, bacteriophages, feed additives, are urgently needed. Once Campylobacter in poultry is controlled then other minor sources of Campylobacter including contaminated drinking water, direct contact with (pet) animals, and other food items (e.g. red meat and milk), can be addressed.


Chicken Meat Poultry Meat Multi Locus Sequence Typing Biosecurity Measure Source Attribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by The Danish Council for Strategic Research (project CamVac, contract number 09-067131); by the CamCon project (Campylobacter Control—Novel Approaches in Primary Poultry Production), funded by the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement number 244547 (JAW). WHO Global Food-Borne Infections Network (GFN) is acknowledged for the stimulating discussions.


  1. Ang CW, Teunis PFM, Herbrink P et al (2011) Seroepidemiological studies indicate frequent and repeated exposure to Campylobacter spp. during childhood. Epidemiol Infect 139(9):1361–1368PubMedCrossRefGoogle Scholar
  2. Bahrndorff S, Rangstrup-Christensen L, Nordentoft S, Hald B (2013) Foodborne disease prevention and broiler chickens with reduced Campylobacter infection. Emerg Infect Dis 19(3):425–430PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baker MG, Kvalsvig A, Zhang J et al (2012) Declining Guillain-Barré syndrome after campylobacteriosis control, New Zealand, 1988–2010. Emerg Infect Dis 18(2):226–233PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bouwknegt M, van Pelt W, Havelaar AH (2013) Scoping the impact of changes in population age-structure on the future burden of foodborne disease in The Netherlands, 2020–2060. Int J Environ Res Public Health 10(7):2888–2896PubMedCentralPubMedCrossRefGoogle Scholar
  5. Burch D (2005) Avian vibrionic hepatitis in laying hens. Vet Rec 157(17):528PubMedCrossRefGoogle Scholar
  6. Callicott KA, Friethriksdóttir V, Reiersen J et al (2006) Lack of evidence for vertical transmission of Campylobacter spp. in chickens. Appl Environ Microbiol 72(9):5794–5798PubMedCentralPubMedCrossRefGoogle Scholar
  7. Carrique-Mas J, Andersson Y, Hjertqvist M et al (2005) Risk factors for domestic sporadic campylobacteriosis among young children in Sweden. Scand J Infect Dis 37(2):101–110PubMedCrossRefGoogle Scholar
  8. Cawthraw SA, Newell DG (2010) Investigation of the presence and protective effects of maternal antibodies against Campylobacter jejuni in chickens. Avian Dis 54(1):86–93PubMedCrossRefGoogle Scholar
  9. Cawthraw SA, Wassenaar TM, Ayling R et al (1996) Increased colonization potential of Campylobacter jejuni strain 81116 after passage through chickens and its implication on the rate of transmission within flocks. Epidemiol Infect 117(1):213–215PubMedCentralPubMedCrossRefGoogle Scholar
  10. CDC—Centers for Disease Control and Prevention (2012) Features—trends in foodborne illness in the United States, 2012. Accessed 30 March 2014
  11. Cheng AC, Turnidge J, Collignon P et al (2012) Control of fluoroquinolone resistance through successful regulation, Australia. Emerg Infect Dis 18(9):1453–1460PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cox NA, Richardson LJ, Maurer JJ et al (2012) Evidence for horizontal and vertical transmission in Campylobacter passage from hen to her progeny. J Food Prot 75(10):1896–1902PubMedCrossRefGoogle Scholar
  13. CSSSC—Campylobacter Sentinel Surveillance Scheme Collaborators (2002) Ciprofloxacin resistance in Campylobacter jejuni: case–case analysis as a tool for elucidating risks at home and abroad. J Antimicrob Chemother 50(4):561–568CrossRefGoogle Scholar
  14. Danis K, Di Renzi M, O’Neill W et al (2009) Risk factors for sporadic Campylobacter infection: an all-Ireland case-control study. Euro Surveill 14(7):pii–19123Google Scholar
  15. De Jong AEI, Verhoeff-Bakkenes L, Nauta MJ, de Jonge R (2008) Cross-contamination in the kitchen: effect of hygiene measures. J Appl Microbiol 105(2):615–624PubMedCrossRefGoogle Scholar
  16. De Zoete MR, van Putten JPM, Wagenaar JA (2007) Vaccination of chickens against Campylobacter. Vaccine 25(30):5548–5557PubMedCrossRefGoogle Scholar
  17. Dekeyser P, Gossuin-Detrain M, Butzler JP, Sternon J (1972) Acute enteritis due to related vibrio: first positive stool cultures. J Infect Dis 125(4):390–392PubMedCrossRefGoogle Scholar
  18. Didelot X, Bowden R, Wilson DJ et al (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13(9):601–612PubMedCrossRefGoogle Scholar
  19. Dingle KE, Colles FM, Wareing DR et al (2001) Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 39(1):14–23PubMedCentralPubMedCrossRefGoogle Scholar
  20. Domingues AR, Pires SM, Halasa T, Hald T (2012) Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiol Infect 140(6):970–981PubMedCrossRefGoogle Scholar
  21. Doorduyn Y, Van Pelt W, Siezen CLE et al (2008) Novel insight in the association between salmonellosis or campylobacteriosis and chronic illness, and the role of host genetics in susceptibility to these diseases. Epidemiol Infect 136(9):1225–1234PubMedCentralPubMedCrossRefGoogle Scholar
  22. Doorduyn Y, Van Den Brandhof WE, Van Duynhoven YTHP et al (2010) Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study. Epidemiol Infect 138(10):1391–1404PubMedCrossRefGoogle Scholar
  23. Eberhart-Phillips J, Walker N, Garrett N et al (1997) Campylobacteriosis in New Zealand: results of a case-control study. J Epidemiol Community Health 51(6):686–691PubMedCentralPubMedCrossRefGoogle Scholar
  24. EFSA—European Food Safety Authority (2008) Scientific opinion of the Panel on Biological Hazards on a request from EFSA on overview of methods for source attribution for human illness from food borne microbiological hazards. EFSA J 764:1–43Google Scholar
  25. EFSA—European Food Safety Authority (2010) Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of campylobacter and Salmonella on broiler carcasses in the EU, 2008. Part A: Campylobacter and Salmonella prevalence estimates. EFSA J 8(3):1503. doi:10.2903/j.efsa.2010.1503Google Scholar
  26. EFSA and ECDC—European Food Safety Authority and European Centre for Disease Prevention and Control (2014) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J 12:3547Google Scholar
  27. EFSA BIOHAZ—European Food Safety Authority Panel on Biological Hazards (2010) Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J 8(1):1437. doi:10.2903/j.efsa.2010.1437Google Scholar
  28. EFSA BIOHAZ—European Food Safety Authority Panel on Biological Hazards (2011) Scientific opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J 9(4):2105. doi:10.2903/j.efsa.2011.2105Google Scholar
  29. Endtz HP, Mouton RP, van der Reyden T et al (1990) Fluoroquinolone resistance in Campylobacter spp. isolated from human stools and poultry products. Lancet 335(8692):787PubMedCrossRefGoogle Scholar
  30. Friedman CR, Hoekstra RM, Samuel M et al (2004) Risk factors for sporadic Campylobacter infection in the United States: a case-control study in FoodNet sites. Clin Infect Dis 38(3):S285–S296PubMedCrossRefGoogle Scholar
  31. Friesema IHM, Havelaar AH, Westra PP et al (2012) Poultry culling and Campylobacteriosis reduction among humans, The Netherlands. Emerg Infect Dis 18(3):466–468PubMedCentralPubMedCrossRefGoogle Scholar
  32. Gallay A, Bousquet V, Siret V et al (2008) Risk factors for acquiring sporadic Campylobacter infection in France: results from a national case-control study. J Infect Dis 197(10):1477–1484PubMedCrossRefGoogle Scholar
  33. Ge B, Wang F, Sjölund-Karlsson M, McDermott PF (2013) Antimicrobial resistance in campylobacter: susceptibility testing methods and resistance trends. J Microbiol Methods 95(1):57–67PubMedCrossRefGoogle Scholar
  34. Gillespie IA, O’Brien SJ, Frost JA et al (2002) A case–case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerg Infect Dis 8(9):937–942PubMedCentralPubMedCrossRefGoogle Scholar
  35. Haagsma JA, Siersema PD, De Wit NJ, Havelaar AH (2010) Disease burden of post-infectious irritable bowel syndrome in The Netherlands. Epidemiol Infect 138(11):1650–1656PubMedCrossRefGoogle Scholar
  36. Havelaar AH, Mangen M-JJ, de Koeijer AA et al (2007) Effectiveness and efficiency of controlling Campylobacter on broiler chicken meat. Risk Anal 27(4):831–844PubMedCrossRefGoogle Scholar
  37. Havelaar AH, van Pelt W, Ang CW et al (2009) Immunity to Campylobacter: Its role in risk assessment and epidemiology. Crit Rev Microbiol 35(1):1–22PubMedCrossRefGoogle Scholar
  38. Havelaar AH, Haagsma JA, Mangen M-JJ et al (2012) Disease burden of foodborne pathogens in The Netherlands, 2009. Int J Food Microbiol 156(3):231–238PubMedCrossRefGoogle Scholar
  39. Havelaar AH, Ivarsson S, Löfdahl M, Nauta MJ (2013) Estimating the true incidence of campylobacteriosis and salmonellosis in the European Union, 2009. Epidemiol Infect 141(2):293–302PubMedCrossRefGoogle Scholar
  40. Helms M, Simonsen J, Mølbak K (2006) Foodborne bacterial infection and hospitalization: a registry-based study. Clin Infect Dis 42(4):498–506PubMedCrossRefGoogle Scholar
  41. Hermans D, Martel A, Garmyn A et al (2012) Application of medium-chain fatty acids in drinking water increases Campylobacter jejuni colonization threshold in broiler chicks. Poult Sci 91(7):1733–1738PubMedCrossRefGoogle Scholar
  42. Hoffmann S, Batz MB, Morris JG Jr (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75(7):1292–1302PubMedCrossRefGoogle Scholar
  43. Inglis GD, McAllister TA, Larney FJ, Topp E (2010) Prolonged survival of Campylobacter species in bovine manure compost. Appl Environ Microbiol 76(4):1110–1119PubMedCentralPubMedCrossRefGoogle Scholar
  44. Jore S, Viljugrein H, Brun E et al (2010) Trends in Campylobacter incidence in broilers and humans in six European countries, 1997–2007. Prev Vet Med 93(1):33–41PubMedCrossRefGoogle Scholar
  45. Kalupahana RS, Kottawatta KSA, Kanankege KST et al (2013) Colonization of Campylobacter spp. in broiler chickens and laying hens reared in tropical climates with low-biosecurity housing. Appl Environ Microbiol 79(1):393–395PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kapperud G, Espeland G, Wahl E et al (2003) Factors associated with increased and decreased risk of Campylobacter infection: a prospective case-control study in Norway. Am J Epidemiol 158(3):234–242PubMedCrossRefGoogle Scholar
  47. Katsma WEA, De Koeijer AA, Jacobs-Reitsma WF et al (2007) Assessing interventions to reduce the risk of Campylobacter prevalence in broilers. Risk Anal 27(4):863–876PubMedCrossRefGoogle Scholar
  48. Lin J (2009) Novel approaches for Campylobacter control in poultry. Foodborne Pathog Dis 6(7):755–765PubMedCentralPubMedCrossRefGoogle Scholar
  49. Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8(12):669–685PubMedCrossRefGoogle Scholar
  50. Mangen M-JJ, Plass D, Havelaar AH et al (2013) The pathogen- and incidence-based DALY approach: an appropriate [corrected] methodology for estimating the burden of infectious diseases. PloS One 8(11):e79740. doi: 10.1371/journal.pone.0079740PubMedCentralPubMedCrossRefGoogle Scholar
  51. Marks SL, Rankin SC, Byrne BA, Weese JS (2011) Enteropathogenic bacteria in dogs and cats: diagnosis, epidemiology, treatment, and control. J Vet Intern Med 25(6):1195–1208PubMedCrossRefGoogle Scholar
  52. McCarthy ND, Colles FM, Dingle KE et al (2007) Host-associated genetic import in Campylobacter jejuni. Emerg Infect Dis 13(2):267–272PubMedCentralPubMedCrossRefGoogle Scholar
  53. Milnes AS, Stewart I, Clifton-Hadley FA et al (2008) Intestinal carriage of verocytotoxigenic Escherichia coli O157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiol Infect 136(6):739–751PubMedCentralPubMedCrossRefGoogle Scholar
  54. Mughini Gras L, Smid JH, Wagenaar JA et al (2012) Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis. PloS One 7(8):e42599. doi:10.1371/journal.pone.0042599Google Scholar
  55. Mughini Gras L, Smid JH, Wagenaar JA et al (2013) Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets. Epidemiol Infect 141(12):2526–2535PubMedCrossRefGoogle Scholar
  56. Mughini Gras L, Smid JH, Wagenaar JA et al (2014) Campylobacteriosis in returning travellers and potential secondary transmission of exotic strains. Epidemiol Infect 142(6):1277–1288PubMedCrossRefGoogle Scholar
  57. Mullner P, Spencer SEF, Wilson DJ et al (2009) Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach. Infect Genet Evol 9(6):1311–1319PubMedCrossRefGoogle Scholar
  58. Mullner P, Collins-Emerson JM, Midwinter AC et al (2010a) Molecular epidemiology of Campylobacter jejuni in a geographically isolated country with a uniquely structured poultry industry. Appl Environ Microbiol 76(7):2145–2154Google Scholar
  59. Mullner P, Shadbolt T, Collins-Emerson JM et al (2010b) Molecular and spatial epidemiology of human campylobacteriosis: source association and genotype-related risk factors. Epidemiol Infect 138(10):1372–1383Google Scholar
  60. Nauta MJ, Havelaar AH (2008) Risk-based standards for Campylobacter in the broiler meat chain. Food Control 19(4):372–381CrossRefGoogle Scholar
  61. Neal KR, Slack RC (1997) Diabetes mellitus, anti-secretory drugs and other risk factors for campylobacter gastro-enteritis in adults: a case-control study. Epidemiol Infect 119(3):307–311PubMedCentralPubMedCrossRefGoogle Scholar
  62. Neimann J, Engberg J, Mølbak K, Wegener HC (2003) A case-control study of risk factors for sporadic campylobacter infections in Denmark. Epidemiol Infect 130(3):353–366PubMedCentralPubMedGoogle Scholar
  63. Newell DG, Fearnley C (2003) Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol 69(8):4343–4351PubMedCentralPubMedCrossRefGoogle Scholar
  64. Newell DG, Shreeve JE, Toszeghy M et al (2001) Changes in the carriage of Campylobacter strains by poultry carcasses during processing in abattoirs. Appl Environ Microbiol 67(6):2636–2640PubMedCentralPubMedCrossRefGoogle Scholar
  65. Newell DG, Elvers KT, Dopfer D et al (2011) Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl Environ Microbiol 77(24):8605–8614PubMedCentralPubMedCrossRefGoogle Scholar
  66. Nicholson FA, Groves SJ, Chambers BJ (2005) Pathogen survival during livestock manure storage and following land application. Bioresour Technol 96(2):135–143PubMedCrossRefGoogle Scholar
  67. Pires SM, Evers EG, van Pelt W et al (2009) Attributing the human disease burden of foodborne infections to specific sources. Foodborne Pathog Dis 6(4):417–424PubMedCrossRefGoogle Scholar
  68. Pires SM, Vigre H, Makela P, Hald T (2010) Using outbreak data for source attribution of human salmonellosis and campylobacteriosis in Europe. Foodborne Pathog Dis 7(11):1351–1361PubMedCrossRefGoogle Scholar
  69. Potter RC, Kaneene JB, Hall WN (2003) Risk factors for sporadic Campylobacter jejuni infections in rural Michigan: a prospective case-control study. Am J Public Health 93(12):2118–2123PubMedCentralPubMedCrossRefGoogle Scholar
  70. Scallan E, Hoekstra RM, Angulo FJ et al (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17(1):7–15PubMedCentralPubMedCrossRefGoogle Scholar
  71. Schneitz C (2005) Competitive exclusion in poultry—30 years of research. Food Control 16:657–667CrossRefGoogle Scholar
  72. Sears A, Baker MG, Wilson N et al (2011) Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis 17(6):1007–1015PubMedCentralPubMedCrossRefGoogle Scholar
  73. Sebald M, Veron M (1963) Base DNA content and classification of vibrios. Ann Inst Pasteur 105:897–910Google Scholar
  74. Sheppard SK, Dallas JF, Strachan NJC et al (2009) Campylobacter genotyping to determine the source of human infection. Clin Infect Dis 48(8):1072–1078PubMedCentralPubMedCrossRefGoogle Scholar
  75. Skirrow MB (1977) Campylobacter enteritis: a “new” disease. Br Med J 2(6078):9–11PubMedCentralPubMedCrossRefGoogle Scholar
  76. Smid JH, Mughini Gras L, de Boer AG et al (2013) Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis. PLoS One 8(2):e55029. doi:10.1371/journal.pone.0055029Google Scholar
  77. Stafford RJ, Schluter P, Kirk M et al (2007) A multi-centre prospective case-control study of campylobacter infection in persons aged 5 years and older in Australia. Epidemiol Infect 135(6):978–988PubMedCentralPubMedCrossRefGoogle Scholar
  78. Stern NJ, Hiett KL, Alfredsson GA et al (2003) Campylobacter spp. in Icelandic poultry operations and human disease. Epidemiol Infect 130(1):23–32PubMedCentralPubMedCrossRefGoogle Scholar
  79. Strachan NJC, Gormley FJ, Rotariu O et al (2009) Attribution of Campylobacter infections in northeast Scotland to specific sources by use of multilocus sequence typing. J Infect Dis 199(8):1205–1208PubMedCentralPubMedCrossRefGoogle Scholar
  80. Studahl A, Andersson Y (2000) Risk factors for indigenous campylobacter infection: a Swedish case-control study. Epidemiol Infect 125(2):269–275PubMedCentralPubMedCrossRefGoogle Scholar
  81. Swart AN, Tomasi M, Kretzschmar M et al (2012) The protective effects of temporary immunity under imposed infection pressure. Epidemics 4(1):43–47PubMedCrossRefGoogle Scholar
  82. Swift L, Hunter PR (2004) What do negative associations between potential risk factors and illness in analytical epidemiological studies of infectious disease really mean? Eur J Epidemiol 19(3):219–223PubMedCrossRefGoogle Scholar
  83. Tam CC, Higgins CD, Neal KR et al (2009) Chicken consumption and use of acid-suppressing medications as risk factors for Campylobacter enteritis, England. Emerg Infect Dis 15(9):1402–1408PubMedCentralPubMedCrossRefGoogle Scholar
  84. Tam CC, Rodrigues LC, Viviani L et al (2012) Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 61(1):69–77PubMedCentralPubMedCrossRefGoogle Scholar
  85. Tenkate TD, Stafford RJ (2001) Risk factors for campylobacter infection in infants and young children: a matched case-control study. Epidemiol Infect 127(3):399–404PubMedCentralPubMedCrossRefGoogle Scholar
  86. Teunis PFM, Falkenhorst G, Ang CW et al (2013) Campylobacter seroconversion rates in selected countries in the European Union. Epidemiol Infect 141(10):2051–2057PubMedCrossRefGoogle Scholar
  87. Thonart P, Beckers Y, Palm R et al (2010) Prevalence and sources of Campylobacter spp. contamination in free-range broiler production in the southern part of Belgium. Biotechnol Agron Soc Environ 14(2):279–288Google Scholar
  88. Tustin J, Laberge K, Michel P et al (2011) A national epidemic of campylobacteriosis in Iceland, lessons learned. Zoonoses Public Health 58(6):440–447PubMedCrossRefGoogle Scholar
  89. Van Gerwe T, Bouma A, Klinkenberg D et al (2010) Medium chain fatty acid feed supplementation reduces the probability of Campylobacter jejuni colonization in broilers. Vet Microbiol 143(2–4):314–318PubMedCrossRefGoogle Scholar
  90. Vellinga A, Van Loock F (2002) The dioxin crisis as experiment to determine poultry-related campylobacter enteritis. Emerg Infect Dis 8(1):19–22PubMedCentralPubMedCrossRefGoogle Scholar
  91. Wagenaar JA, Mevius DJ, Havelaar AH (2006) Campylobacter in primary animal production and control strategies to reduce the burden of human campylobacteriosis. Rev Sci Tech 25(2):581–594PubMedGoogle Scholar
  92. Wagenaar JA, French NP, Havelaar AH (2013a) Preventing Campylobacter at the source: why is it so difficult? Clin Infect Dis 57(11):1600–1606Google Scholar
  93. Wagenaar JA, Hendriksen RS, Carrique-Mas J (2013b) Practical considerations of surveillance of Salmonella serovars other than Enteritidis and Typhimurium. Rev Sci Tech 32(2):509–519Google Scholar
  94. Wagenaar JA, van Bergen MAP, Blaser MJ et al (2014) Campylobacter fetus infections in humans: exposure and disease. Clin Infect Dis. doi:10.1093/cid/ciu085Google Scholar
  95. WHO—World Health Organization (2013) The global view of campylobacteriosis: report of an expert consultation. Utrecht, Netherlands, 9–11 July 2012. WHO Document Production Services, Geneva. Accessed 13 April 2014
  96. Wilson DJ, Gabriel E, Leatherbarrow AJH et al (2008) Tracing the source of campylobacteriosis. PLoS Genet 4(9):e1000203. doi:10.1371/journal.pgen.1000203PubMedCentralPubMedCrossRefGoogle Scholar
  97. Wu Z, Sippy R, Sahin O et al (2014) Genetic diversity and antimicrobial susceptibility of Campylobacter jejuni isolates associated with sheep abortion in the United States and Great Britain. J Clin Microbiol 52(6):1853–1861. doi: 10.1128/JCM.00355-14PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jaap A. Wagenaar
    • 1
    • 2
    • 3
    Email author
  • Diane G. Newell
    • 4
  • Ruwani S. Kalupahana
    • 5
  • Lapo Mughini-Gras
    • 1
    • 6
  1. 1.Faculty of Veterinary Medicine, Department of Infectious Diseases and ImmunologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Central Veterinary Institute of Wageningen URLelystadThe Netherlands
  3. 3.WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for CampylobacteriosisLelystadThe Netherlands
  4. 4.Food-borne Zoonoses ConsultancySilver BirchesAndoverUK
  5. 5.Faculty of Veterinary Medicine and Animal Science, Department of Veterinary Public Health and PharmacologyUniversity of PeradeniyaPeradeniyaSri Lanka
  6. 6.Centre for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands

Personalised recommendations