Skip to main content

Listeriosis: The Dark Side of Refrigeration and Ensiling

  • Chapter
  • First Online:
Book cover Zoonoses - Infections Affecting Humans and Animals

Abstract

In contrast to most pathogenic bacteria, Listeria monocytogenes is psychrotrophic, capable of multiplying at low temperatures. In an era when food production and food storage heavily rely on refrigeration, this ability to grow (albeit slowly) in a cold environment has opened a new ecological niche for L. monocytogenes. Because of the severity of certain clinical manifestations (infections of the central nervous system, septicemia, and abortion), the high case-fatality rate (up to 30 % of cases), and the long incubation time, human listeriosis is now a zoonosis of major public health concern. L. monocytogenes causes invasive illness mainly in certain well-defined high-risk groups, including immunocompromised persons, pregnant women, neonates, and the elderly. However, listeriosis can occur in otherwise healthy individuals, particularly during an outbreak. The evolvement of silage as a dominant feed for ruminants constitutes another key factor, responsible for the emergence of listeriosis as a relevant animal disease. L. monocytogenes has been isolated from numerous species of mammals, birds, fish, crustaceans, and insects. Nevertheless, the primary habitats of L. monocytogenes are considered to be the soil and decaying vegetable matter, in which it survives and grows saprophytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allerberger F (2003) Listeria: growth, phenotypic differentiation and molecular microbiology. FEMS Immunol Med Microbiol 35:183–189

    CAS  PubMed  Google Scholar 

  • Allerberger F (2007) Listeria. In: Simjee S (ed) Foodborne diseases. Humana Press, Totowa, pp 27–39

    Google Scholar 

  • Allerberger F (2012) Molecular typing in public health laboratories: from an academic indulgence to an infection control imperative. J Prev Med Public Health 45:1–10

    PubMed Central  PubMed  Google Scholar 

  • Allerberger F, Wagner M (2010) Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 16:16–23

    CAS  PubMed  Google Scholar 

  • Allerberger F, Langer B, Hirsch O et al (1989) Listeria monocytogenes cholecystitis. Z Gastroenterol 27:145–147

    CAS  PubMed  Google Scholar 

  • Allerberger F, Kasten MJ, Cockerill FR et al (1992) Listeria monocytogenes infection in prosthetic joints. Int Orthop 16:237–239

    CAS  PubMed  Google Scholar 

  • Allerberger F, Dierich MP, Grundmann H et al (1997) Typing of Austrian Listeria monocytogenes isolates by automated laser fluorescence analysis of randomly amplified polymorphic DNA. Zentralbl Bakteriol 286:33–40

    CAS  PubMed  Google Scholar 

  • American Medical Association, American Nurses Association–American Nurses Foundation, Centers for Disease Control and Prevention et al (2001) Diagnosis and management of foodborne illnesses: a primer for physicians and other health care professionals MMWR 50 [No. RR-2]

    Google Scholar 

  • Angiuoli SV, Matalka M, Gussman G et al (2011a) CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinformatics 12:356

    Google Scholar 

  • Angiuoli SV, White JR, Matalka M et al (2011b) Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing. PLoS ONE 6(10):e26624

    Google Scholar 

  • Armstrong RW, Fung PC (1993) Brainstem encephalitis (rhombencephalitis) due to Listeria monocytogenes: case report and review. Clin Infect Dis 16:689–702

    CAS  PubMed  Google Scholar 

  • Aureli P, Fiorucci GC, Caroli D et al (2000) An outbreak of febrile gastroenteritis associated with corn contaminated with Listeria monocytogenes. N Engl J Med 342:1236–1241

    CAS  PubMed  Google Scholar 

  • Bagó Z, Bauder B, Baumgartner W, Weissenböck H (2001) Zur Ätiologie von Enzephalitiden bei Wiederkäuern: eine retrospektive Analyse. Wien Tierärztl Mschr 88:289–303

    Google Scholar 

  • Bertsch D, Rau J, Eugster MR et al (2012) Listeria fleischmannii sp. nov., isolated from cheese. Int J Syst Evol Microbiol 63:526–532

    PubMed  Google Scholar 

  • Bertsch D, Muelli M, Weller M et al (2014) Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical and environmental Listeria spp. isolates including Listeria monocytogenes. Microbiologyopen 3:118–127

    Google Scholar 

  • Bhagwat A (1992) Restriction Enzymes—Properties and Use. Methods Enzymol 216:199–224

    CAS  PubMed  Google Scholar 

  • Bille J (2007) Listeria and Erysipelothrix. In: Murray PR, Baron EJ, Jorgensen JH, Landry MC, Pfaller MA (eds) Manual of clinical microbiology, 9th edn. ASM Press, Washington, DC, pp 474–484

    Google Scholar 

  • Birren BW, Lai E, Clark SM et al (1988) Optimized conditions for pulsed field gel electrophoretic separations of DNA. Nucleic Acids Res 16:7563–7582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun U, Stehle C, Ehrensperger F (2002) Clinical findings and treatment of listeriosis in 67 sheep and goats. Vet Rec 150:38–42

    CAS  PubMed  Google Scholar 

  • Carey K (2013) Investigations follow Jindi Chese listeria fafalities. Australian Food News. http://ausfoodnews.com.au/

    PubMed  Google Scholar 

  • Carpentier B, Cerf O (2011) Review—Resistance of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8

    PubMed  Google Scholar 

  • Cartwright EJ, Jackson KA, Johnson SD et al (2013, Jan) Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg Infect Dis Emerg Infect Dis [Internet]. http://dx.doi.org/10.3201/eid1901.120393.doi:10.3201/eid1901.120393

  • CDC, Centers for Disease Control and Prevention (2012, Aug 27) Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado. http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/082712/index.html. Accessed 29 March 2013

  • Chen Y (2012) Listeria monocytogenes. In: Lampel KA, Al-Khaldi S, Cahill SM (eds) Bad bug book—foodborne pathogenic microorganisms and natural toxins, 2nd edn. Food and Drug Administration, Washington (on-line version), pp 99–102. http://www.fda.gov/downloads/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/UCM297627.pdf

  • Chen Y, Knabel SJ (2008) Strain typing. In: Dongyou L. (ed) Handbook of Listeria monocytogenes. CRC Press, Boca Raton, pp 305–356

    Google Scholar 

  • Cheng Y, Siletzky R, Kathariou S (2008) Genomic divisions/lineages, epidemic clones, and population structure. In: Liu D (ed) Handbook of Listeria monocytogenes. CRC Press, Boca Raton, pp 337–357

    Google Scholar 

  • Clayton EM, Hill C, Cotter PD, Ross RP (2011) Real-time PCR assay to differentiate Listeriolysin S-positive and –negative strains of L. monocytogenes. Appl Environ Microbiol 77:163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cobb CA, Curtis GD, Bansi DS et al (1996) Increased prevalence of Listeria monocytogenes in the feces of patients receiving long-term H2-antagonistes. Eur J Gastroenterol Hepatol 8:1071–1074

    CAS  PubMed  Google Scholar 

  • Cossart P, Pizarro-Cerdá J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol 13:23–31

    CAS  PubMed  Google Scholar 

  • Dalton CB, Austin CC, Sobel J et al. (1977) An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N Engl J Med 336:100–105

    Google Scholar 

  • da Silva LJ, Resende MR, de Abreu WB et al (1992) Listeriosis and AIDS: case report and literature review. Rev Inst Med Trop Sao Paulo 34:475–478

    PubMed  Google Scholar 

  • den Bakker HC, Bundrant BN, Fortes ED et al (2010) A population genetics-based and phylogenetic approach to understanding the evolution of virulence in the genus Listeria. Appl Environ Microbiol 76:6085–6100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dennis SM (1975) Perinatal lamb mortality in Western Australia. 6. Listeric infection. Aust Vet J 51:75–79

    CAS  PubMed  Google Scholar 

  • Disson O, Grayo S, Huillet E et al (2008) Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118

    CAS  PubMed  Google Scholar 

  • Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004a) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42:3819–3822

    Google Scholar 

  • Doumith M, Cazalet C, Simoes N et al. (2004b) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083

    Google Scholar 

  • ECDC, European Centre for Disease Prevention and Control (March, 2013) Surveillance of communicable diseases in Europe—a concept to integrate molecular typing data into EU-level surveillance. Stockholm: ECDC; 2013. Stockholm, ISBN 978-92-9193-451-5. doi:10.2900/

    Google Scholar 

  • European Commission (2005) Commission regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Luxembourg: Publications Office of the European Union. 22.12.2005:L 338/1. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0001:0026:EN:PDF

  • European Commission (2012) The 2012 Ageing Report. Economic and budgetary projections for the 27 EU Member States (2010–2060). European Commission, Brussels

    Google Scholar 

  • EFSA, European Food Safety Authority, European Centre for Disease Prevention and Control (2012) The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2010. EFSA Journal 10:2597. doi:10.2903/j.efsa.2012.2597

    Google Scholar 

  • Evans K, Smith M, McDonough P, Wiedmann M (2004) Eye infections due to Listeria monocytogenes in three cows and one horse. J Vet Diagn Invest 16:464–469

    PubMed  Google Scholar 

  • Fairley RA, Pesavento PA, Clark RG (2012) Listeria monocytogenes infection of the alimentary tract (enteric listeriosis) of sheep in New Zealand. J Comp Pathol 146:308–313

    CAS  PubMed  Google Scholar 

  • Fangman WL (1978) Separation of very large DNA molecules by gel electrophoresis. Nucleic Acids Res 5:653–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Food and Drug Administration (2003) Quantitative assessment of relative risk to public health from foodborne Listeria monocytogenes among selected categories of ready-to-eat foods. FDA/Center for Food Safety and Applied Nutrition USDA/Food Safety and Inspection Service, Washington (cited 2013 March 12). http://www.fda.gov/food/scienceresearch/researchareas/riskassessmentsafetyassessment/ucm183966.htm

  • Feng Y, Wu S, Varma JK et al (2013) A systematic review of human listeriosis in China, 1964–2010. Trop Med Int Health 18(10):1248-56

    Google Scholar 

  • Gillespie IA, McLauchlin J, Grant KA et al (2006) Changing pattern of human listeriosis, England and Wales, 2001–2004. Emerg Infect Dis 12:1361–1366

    PubMed Central  PubMed  Google Scholar 

  • Gillespie IA, McLauchlin J, Little CL et al (2009) Disease presentation in relation to infection foci for non-pregnancy-associated human listeriosis in England and Wales, 2001 to 2007. J Clin Microbiol 47:3301–3307

    PubMed Central  PubMed  Google Scholar 

  • Gillespie IA, Mook P, Little CL et al (2010a) Human listeriosis in England, 2001–2007: association with neighbourhood deprivation. Euro Surveill 15:7–16

    Google Scholar 

  • Gillespie IA, Mook P, Little CL et al (2010b) Listeria monocytogenes infection in the over-60s in England between 2005 and 2008: a retrospective case-control study utilizing market research panel data. Foodborne Pathog Dis 7:1373–1379

    Google Scholar 

  • Gilmour MW, Graham M, Van Domselaar G et al (2010) High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne-outbreak. BMC Genomics 11:120. doi:10.1186/1471-2164-11-120

    PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Zorn B, Dominguez-Bernal G, Suarez M et al (2000) SmcL, a novel membrane-damaging virulence factor in Listeria. Int J Med Microbiol 290:369–374

    CAS  PubMed  Google Scholar 

  • Goulet V, Jacquet C, Vaillant V et al (1995) Listeriosis from consumption of raw-milk cheese. Lancet 345:1581–1582

    CAS  PubMed  Google Scholar 

  • Goulet V, Rocourt J, Rebiere I et al (1998) Listeriosis outbreak associated with the consumption of rillettes in France in 1993. J Infect Dis 177:155–160

    CAS  PubMed  Google Scholar 

  • Goulet V, Hedberg C, Le Monnier A, De Valk H (2008) Increasing incidence of listeriosis in France and other European countries. Emerg Infect Dis 14:734–740

    PubMed Central  PubMed  Google Scholar 

  • Goulet V, King LA, Vaillant V, deValk H (2013) What is the incubation period of listeriosis? BMC Infect Dis 13:11

    PubMed Central  PubMed  Google Scholar 

  • Gottlieb SL, Newbern EC, Griffin PM et al (2006) Multistate outbreak of listeriosis linked to turkey deli meat and subsequent changes in US regulatory policy. Clin Infect Dis 42:29–36

    PubMed  Google Scholar 

  • Graves LM, Swaminathan B, Hunter SB (2007) Subtyping Listeria monocytogenes. In: Ryser ET, Marth EH (eds) Listeria, listeriosis, and food safety. CRC, Boca Raton, pp 85–109

    Google Scholar 

  • Grif K, Patscheider G, Dierich MP, Allerberger F (2003) Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: A one-year prospective stool survey. Eur J Clin Microbiol Infect Dis 22:16–20

    CAS  PubMed  Google Scholar 

  • Guerrero MLF, Rivas P, Ràbago R et al (2004) Prosthetic valve endocarditis due to L. monocytogenes. Report of two cases and reviews. Int J Infect Dis 8:97–102

    Google Scholar 

  • Herd M, Kocks C (2001) Gene fragments distinguishing an epidemic-associated strain from a virulent prototype strain of Listeria monocytogenes belong to a distinct functional subset of genes and partially cross-hybridize with other Listeria species. Infect Immun 69:3972–3979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heymann D (ed) (2008) Control of communicable diseases manual, 19th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Ho AJ, Ivanek R, Grohn YT et al (2007) Listeria monocytogenes fecal shedding in dairy cattle shows high levels of day-to-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes. Prev Vet Med 80:287–305

    CAS  PubMed  Google Scholar 

  • Hoelzer K, Pouillot R, Dennis S (2012) Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. Vet Res 43:18. doi:10.1186/1297-9716-43-18

    PubMed Central  PubMed  Google Scholar 

  • Hof H, Lampidis R (2001) Retrospective evidence for nosocomial listeria infection. J Hosp Infect 48:421

    Google Scholar 

  • Hunter SB, Vauterin P, Lambert-Fair MA et al (2005) Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 43:1045–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jadhav S, Bhave M, Palombo EA (2012) Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Meth 88:327–341

    CAS  Google Scholar 

  • Jemmi T, Stephan R (2006) Listeria monocytogenes: food-borne pathogen and hygiene indicator. Rev Sci Tech 25:571–580

    CAS  PubMed  Google Scholar 

  • Johnson BO, Lingaas E, Torfoss D et al (2010) A large outbreak of Listeria monocytogenes infection with short incubation period in a tertiary care hospital. J Infect 61:465–470

    Google Scholar 

  • Jose-Cunilleras E, Hinchcliff KW (2001) Listeria monocytogenes septicaemia in foals. Equine Vet J 33:519–522

    CAS  PubMed  Google Scholar 

  • Kasper S, Huhulescu S, Auer B et al (2009) Epidemiology of listeriosis in Austria. Wien Klin Wochenschr 121:113–119

    PubMed  Google Scholar 

  • Kim JW, Kathariou S (2009) Temperature-dependent phage resistance of Listeria monocytogenes epidemic clone II. Appl Environ Microbiol 75:2433–2438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kück P, Greve C, Misof B, Gimnich F (2012) Automated masking of AFLP markers improves reliability of phylogenetic analyses. PloS ONE 7:e49119

    PubMed Central  PubMed  Google Scholar 

  • Kurazono M, Nakamura K, Yamada M et al (2003) Pathology of listerial encephalitis in chickens in Japan. Avian Dis 47:1496–1502

    PubMed  Google Scholar 

  • Lahuerta A, Westrell T, Takkinen J et al (2011) Zoonoses in the European Union: origin, distribution and dynamics—the EFSA-ECDC summary report 2009. Euro Surveill 16(13):pii= 19832

    Google Scholar 

  • Läikkö T, Båverud V, Danielsson-Tham ML et al (2004) Canine tonsillitis associated with Listeria monocytogenes. Vet Rec 154:732

    PubMed  Google Scholar 

  • Lebreton A, Lakisic G, Job V et al (2011) A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331:1319–1321

    CAS  PubMed  Google Scholar 

  • Leclercq A, Clermont D, Bizet C et al (2010) Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 60:2210–2214

    CAS  PubMed  Google Scholar 

  • Lecuit M (2007) Human listeriosis and animal models. Microbes Infect 9:1216–1225

    CAS  PubMed  Google Scholar 

  • Lecuit M, Ohayon H, Braun L et al (1997) Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65:5309–5319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lecuit M, Vandormael-Pournin S, Lefort J et al (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725

    CAS  PubMed  Google Scholar 

  • Lee PY, Costumbrado J, Hsu CY, Kim YH (2012a) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 62. doi:pii:3923.10.3791/3923

    Google Scholar 

  • Lee S, Siletzky RM, Kathariou S (2012b) Epidemiology, pathogenesis, ecology and genetics of Listeria monocytogenes. In: Faruque SM (ed) Foodborne and waterborne bacterial pathogens. Caister Academic Press, Norfolk, pp 251–268

    Google Scholar 

  • LeMonnier A, Natas O (2012) Listeria monocytogenes. In: Cornaglia G, Courcol R, Herrmann J-L, Kahlmeter G, Peigue-Lafeuille H, Vila J (eds) European manual of clinical microbiology, 1st edn. European Society for Clinical Microbiology and Infectious Disease, Basel, pp 291–295

    Google Scholar 

  • Lindstedt BA (2005) Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26:2567–2582

    CAS  PubMed  Google Scholar 

  • Linnan M J, Mascola L, Lou XD et al (1988) Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med 319:823–828

    CAS  PubMed  Google Scholar 

  • Lomonaco S, Verghese B, Gerner-Smidt P et al (2013) Novel epidemic clones of Listeria monocytogenes, United States, 2011. Emerg Infect Dis. doi:10.3201/eid1901.121167

    Google Scholar 

  • Lorber B (2010) Listeria monocytogenes. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 7th edn. Churchill Livingstone Elsevier, Philadelphia, pp 2707–2714.

    Google Scholar 

  • Mahony J, McAuliffe O, Ross RP, van Sinderen D (2011) Bacteriophages as biocontrol agents of food pathogens. Curr Opin Biotechnol 22:157–163

    CAS  PubMed  Google Scholar 

  • Marco F, Almela M, Nolla-Salas J et al (2000) In vitro activities of 22 antimicrobial agents against Listeria monocytogenes strains isolated in Barcelona, Spain. Diagn Microbiol Infect 38:259–261

    CAS  Google Scholar 

  • McLauchlin J (1997) The discovery of Listeria. PHLS Microbiol Dig 31:76–78

    Google Scholar 

  • McLauchlin J (2011) Listeriosis. In: Palmer SR, Soulsby L, Torgerson PR, Brown DWG (eds) Oxford textbook of Zoonoses, 2th edn. Oxford University Press, Oxford, pp 117–127

    Google Scholar 

  • McLauchlin J, Low JC (1994) Primary cutaneous listeriosis in adults: an occupational disease of veterinarians and farmers. Vet Rec 135:615–617

    CAS  PubMed  Google Scholar 

  • Mead PS, Dunne F, Graves L et al (2006) Nationwide outbreak of listeriosis due to contaminated meat. Epidemiol Infect 134:744–751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mengaud J, Ohayon H, Gounon P et al (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932

    CAS  PubMed  Google Scholar 

  • Miettinen MK, Siitonen A, Heiskanen P et al (1999) Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J Clin Microbiol 37:2358–2360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morvan A, Moubareck C, Leclercq A et al (2010) Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob Agents Chemother 54:2728–2731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy M, Corcoran D, Buckley JF et al (2007) Development and application of Multiple-Locus Variable Number of tandem repeat Analysis (MLVA) to subtype a collection of Listeria monocytogenes. Int J Food Microb 115:187–194

    CAS  Google Scholar 

  • Ng PC, Kirkness EF (2010) Whole genome sequencing. Methods Mol Biol 628:215–226

    CAS  PubMed  Google Scholar 

  • Olsen SJ, Patrick M, Hunter SB et al (2005) Multistate outbreak of Listeria monocytogenes infection linked to delicatessen turkey meat. Clin Infect Dis 40:962–967

    PubMed  Google Scholar 

  • Orbach M J, Vollrath D, Davis RW, Yanofsky C (1988) An electrophoretic karyotype of Neurospora crassa. Mol Cell Biol 8:1469–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Otter A, Houlihan MG, Daniel RG et al (2004) Ovine gastrointestinal listeriosis. Vet Rec 154:479

    CAS  PubMed  Google Scholar 

  • Painter JA, Hoekstra RM, Ayers T et al (2013) Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg Infect Dis 19(3):407–415. doi:org/10.3201/eid1903.111866

    Google Scholar 

  • Paoli GC, Bhunia AK, Bayles DO (2005) Listeria monocytogenes. In: Fratamico PM, Bhunia AK, Smith JL (eds) Foodborne pathogenes: microbiology and molecular biology. Caister Academic, Norfolk, pp 296–325

    Google Scholar 

  • Peters M, Scheele G (1996) Listeriose in einem Kaninchenbestand. Dtsch Tierarztl Wochenschr 103:460–462

    CAS  PubMed  Google Scholar 

  • Pichler J, Much P, Kasper S et al (2009) An outbreak of febrile gastroenteritis associated with jellied pork contaminated with Listeria monocytogenes. Wien Klin Wochenschr 121:81–88

    Google Scholar 

  • Pichler J, Appl G, Pietzka A et al (2011) Lessons to be learned from an outbreak of food-borne listeriosis, Austria 2009–2010. Food Prot Trends 31:268–273

    Google Scholar 

  • Pietzka AT, Stöger A, Huhulescu S et al (2011) Gene scanning of an internalin B gene fragment using high-resolution melting curve analysis as a tool for rapid typing of Listeria monocytogenes. J Mol Diagn 13:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinner RW, Schuchat A, Swaminathan B et al (1992) Role of foods in sporadic listeriosis: II. Microbiologic and epidemiologic investigation. JAMA 267:2046–2050

    CAS  PubMed  Google Scholar 

  • Rajabian T, Gavicherla B, Heisig M et al (2009) The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol 11:1212–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos JA, Domingo M, Dominguez L et al (1988) Immunohistologic diagnosis of avian listeriosis. Avian Pathol 17:227–233

    CAS  PubMed  Google Scholar 

  • Rasmussen OF, Skouboe P, Dons L et al (1995) Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology 141:2053–2061

    CAS  PubMed  Google Scholar 

  • Regan EJ, Harrison GA, Butler S et al (2005) Primary cutaneous listeriosis in a veterinarian. Vet Rec 157:207

    CAS  PubMed  Google Scholar 

  • Ribet D, Hamon M, Gouin E et al (2010) Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 164:1192–1195

    Google Scholar 

  • Riedo FX, Pinner RW, Tosca ML et al (1994) A point-source foodborne listeriosis outbreak: documented incubation period and possible mild illness. J Infect Dis 170:693–696

    CAS  PubMed  Google Scholar 

  • Riley DR, Angiuoli SV, Crabtree J et al (2011) Using Sybil for interactive comparative genomics of microbes on the web. Bioinformatics 28:160–166

    PubMed Central  PubMed  Google Scholar 

  • Roberts JR, Quoraishi A, Evans M (1994) Neonatal listeriosis in twins due to crossinfection in theatre recovery room. Lancet 344:1572

    CAS  PubMed  Google Scholar 

  • Rocourt J (1999) The genus Listeria and Listeria monocytogenes: phylogenetic position, taxonomy, and identification. In: Ryer ET, Marth EH (eds) Listeria, listeriosis, and food safety, 2nd edn. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Roussel S, Félix B, Grant K et al (2013) Fluorescence amplified fragment length polymorphism compared to pulsed field gel electrophoresis for Listeria monocytogenes subtyping. BMC Microbiology 13:14. doi:10.1186/1471-2180-13-14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rupptisch W (2013) Molecular typing for epidemiological surveillance and outbreak investigation. Habilitationsschrift zur Erlangung der venia legendi für das Fach Molekulare Epidemiologie am Institut für angewandte Mikrobiologe der Universität für Bodenkultur, Wien.

    Google Scholar 

  • Rütten M, Lehner A, Pospischil A, Sydler T (2006) Cerebral listeriosis in an adult Freiberger gelding. J Comp Pathol 134:249–253

    PubMed  Google Scholar 

  • Ryser ET, Marth EM (2007) Listeria, listeriosis and food safety, 3rd edn. Taylor & Francis Group, Boca Raton, pp 474–484

    Google Scholar 

  • Sabat AJ, Budimir A, Nashev D et al (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18(4):pii= 20380. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20380

  • Salamina G, Dalle Donne E, Niccolini A et al (1996) A foodborne outbreak of gastroenteritis involving Listeria monocytogenes. Epidemiol Infect 117:429–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanaa M, Poutrel B, Menard JL, Serieys F (1993) Risk factors associated with contamination of raw milk by Listeria monocytogenes in dairy farms. J Dairy Sci 76:2891–2898

    CAS  PubMed  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ et al (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    PubMed Central  PubMed  Google Scholar 

  • Schmid D, Allerberger F, Huhulescu S, et al (2014) Whole genome sequencing as a tool to investigate a cluster of seven cases of listeriosis in Austria and Germany, 2011–2013. Clin Microbiol Infect 20:431–436

    Google Scholar 

  • Schmid H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56

    Google Scholar 

  • Schroeder H, van Rensburg IB (1993) Generalised Listeria monocytogenes infection in a dog. J S Afr Vet Assoc 64:133–136

    CAS  PubMed  Google Scholar 

  • Schuchat A, Deaver KA, Wenger JD et al (1992) Role of foods in sporadic listeriosis: I. Case-control study of dietary risk factors. JAMA 267:2041–2045

    CAS  PubMed  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed-field gradient gel electrophoresis. Cell 37:67–75

    CAS  PubMed  Google Scholar 

  • Schweizer G, Ehrensperger F, Torgerson PR, Braun U (2006) Clinical findings and treatment of 94 cattle presumptively diagnosed with listeriosis. Vet Rec 158:588–592

    CAS  PubMed  Google Scholar 

  • Selbitz HJ (2011) Gattung Listeria. In: Selbitz HJ, Truyen U, Valentin-Weigand P (eds) Tiermedizinische Mikrobiologie, Infektions- und Seuchenlehre. 9th edn. Enke Verlag, Stuttgart. pp 289–293

    Google Scholar 

  • Sisó C, Goncé A, Bosch J et al (2012) Listeriosis in pregnancy: a secular trend in a tertiary referral hospital in Barcelona. Eur J Clin Microbiol Infect Dis 31:2125–2132

    PubMed  Google Scholar 

  • Smith MA, Takeuchi K, Brackett RE et al (2003) Nonhuman primate model for Listeria monocytogenes-induced stillbirths. Infect Immun 71:1574–1579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith B, Larrson JT, Lisby M et al (2011) Outbreak of listeriosis caused by infected beef meat from a meals-on-wheels delivery in Denmark 2009. Clin Microbiol Infect 17:50–52

    CAS  PubMed  Google Scholar 

  • Sperry KE, Kathariou S, Edwards JS, Wolf LA (2008) Multiple-locus variable-number tandem-repeat analysis as a tool for subtyping Listeria monocytogenes strains. J Clin Microbiol 46:1435–1450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sturgess CP (1989) Listerial abortion in the bitch. Vet Rec 124:177

    CAS  PubMed  Google Scholar 

  • Swaminathan B, Cabanes D, Zhang W, Cossart P (2007) Listeria monocytogenes. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. American Society for Microbiology, Washington, DC, pp 457–491

    Google Scholar 

  • Thompson H, Taylor DJ, Philbey AW (2009) Fatal mesenteric lymphadenitis in cattle caused by Listeria monocytogenes. Vet Rec 164:17–18

    CAS  PubMed  Google Scholar 

  • Tran HL, Kathariou S (2002) Restriction fragment length polymorphisms detected with novel DNA probes differentiate among diverse lineages of serogroup 4 Listeria and identify four distinct lineages in serotype 4b. Appl Environ Microbiol 68:59–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tunkel AR, Hartmann BJ, Kaplan SL et al (2004) Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 39:1267–1284

    PubMed  Google Scholar 

  • Varma JK, Samuel MC, Marcus R et al (2007) Listeria monocytogenes infection from foods prepared in a commercial establishment: a case-control study of potential sources of sporadic illness in the United States. Clin Infect Dis 44:521–528

    PubMed  Google Scholar 

  • Vazquez-Boland JA, Kuhn M, Berche P et al (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:586–640

    Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner M, Allerberger F (2003) Characterization of Listeria monocytogenes recovered from 41 cases of sporadic listeriosis in Austria by serotyping and pulsed-field gel electrophoresis. FEMS Immunol Med Microbiol 35:227–234

    CAS  PubMed  Google Scholar 

  • Wagner M, MacLauchlin J (2008) Biology. In: Liu D (ed) Handbook of Listeria monocytogenes. CRC Press, Boca Raton, pp 3–25

    Google Scholar 

  • Wagner M, Melzer D, Bagó Z et al (2005) Outbreak of clinical listeriosis in sheep: evaluation from possible contamination routes from feed to raw produce and humans. J Vet Med B 52:278–283

    CAS  Google Scholar 

  • Wagner M, Auer B, Trittremmel C et al (2007) Survey on the Listeria contamination of ready-to-eat food products and household environments in Vienna, Austria. Zoonoses Public Health 54:16–22

    CAS  PubMed  Google Scholar 

  • Warner SL, Boggs J, Lee JK et al (2012) Clinical, pathological, and genetic characterization of Listeria monocytogenes causing sepsis and necrotizing typhlocolitis and hepatitis in a foal. J Vet Diagn Invest 24:581–586

    PubMed  Google Scholar 

  • Weiss R (2005) Listeriose. In: Horzinek M, Schmidt V, Lutz H (eds) Krankheiten der Katze, 4th edn. Enke Verlag, Stuttgart, pp 172–173

    Google Scholar 

  • Weiss R, Amtsberg G (1995) Listeriose. In: Blobel H, Schließer T (eds) Handbuch der bakteriellen Infektionen bei Tieren, B and II/3, 2nd edn. Gustav Fischer Verlag, Jena, pp 13–154.

    Google Scholar 

  • Welsh RD (1983) Equine abortion caused by Listeria monocytogenes serotype 4. J Am Vet Med Assoc 182:291

    CAS  PubMed  Google Scholar 

  • Wendt M, Bickhardt K (2001) Listeriose (Listeriosis). In: Waldmann KH, Wendt M (eds) Lehrbuch der Schweinekrankheiten, 3rd edn. Blackwell Wissenschafts-Verlag, Berlin, pp 219.

    Google Scholar 

  • Winter P, Schilcher F, Bagó Z et al (2004): Clinical and histopathological aspects of naturally occurring mastitis caused by Listeria monocytogenes in cattle and ewes. J Vet Med B 51:176–179

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Allerberger MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Allerberger, F., Bagó, Z., Huhulescu, S., Pietzka, A. (2015). Listeriosis: The Dark Side of Refrigeration and Ensiling. In: Sing, A. (eds) Zoonoses - Infections Affecting Humans and Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9457-2_10

Download citation

Publish with us

Policies and ethics