Skip to main content

Spectral and Pseudospectral Methods of Solution of the Fokker-Planck and Schrödinger Equations

  • Chapter
  • First Online:
Spectral Methods in Chemistry and Physics

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 3137 Accesses

Abstract

Spectral and pseudospectral methods based on classical and nonclassical polynomial basis sets are used for the solution of the Fokker-Planck and Schrödinger equations. Fokker-Planck equations describe many different processes in chemistry and physics, and their study has attracted considerable attention by researchers in many different fields including astrophysics, finance and biology. Pseudospectral methods of solution of the Fokker-Planck equation are presented for several systems such as the Ornstein-Uhlenbeck model for Brownian motion, electron thermalization in atomic moderators, charged particle relaxation in plasmas and models for chemical reactions based on Kramers’ equation. A Fokker-Planck equation can be transformed to a Schrödinger equation with a potential that belongs to the class of potentials in supersymmetric quantum mechanics and expressed in terms of the superpotential. The quantum harmonic oscillator and the Morse potential belong to this class of Schrödinger equations. The pseudospectral methods developed for the solution of the Fokker-Planck equation based on nonclassical basis sets are also applied to a large number of the Schrödinger equations including the Henon-Heles potential. Fundamental aspects of different pseudospectral methods such as the Discrete Variable Representation, the Quadrature Discretization method, the Lagrange mesh method and Fourier grid methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Adrian Fokker (1887–1972) was a Dutch physicist who made contributions to relativity and statistical mechanics in collaboration with Albert Einstein. The Fokker-Planck equation used to model numerous processes in physics, astrophysics, chemistry, finance and biology bears his name. He also made numerous contributions to music theory.

  2. 2.

    Max Planck (1858–1947) was a German physicist and the 1918 Nobel laureate for his contributions to the explanation of the photoelectric effect, energy quantization and the introduction of the Planck constant. The basis for this work was his doctoral work on thermodynamics as related to black body radiation at equilibrium. Planck and Fokker independently derived the Fokker-Planck equation of statistical physics.

  3. 3.

    Robert Brown (1773–1858) was a Scottish botanist who made important contributions to botany and statistical physics from his use of a microscope to observe the random motion of pollen grains which was later referred to as Brownian motion.

  4. 4.

    Paul Langevin (1872–1946) was a French physicist and doctoral student with J.J. Thompson at the Cavendish Laboratory and Pierre Curie in Paris. He worked extensively on paramagnetism and diamagnetism as well as in kinetic theory and theory of Brownian motion following on Einstein’s work.

  5. 5.

    Marian Smoluchowski (1872–1917) was a Polish physicist who was responsible for the development of fundamental concepts in statistical physics, kinetic theory and Brownian motion. His name is associated with integral equations for coagulation and a Fokker-Planck equation for chemical reactions.

References

  • Abbott, D.: Overview: unsolved problems of noise and fluctuations. Chaos 11, 526–538 (2001)

    ADS  MATH  Google Scholar 

  • Abolhassani, A.A.H., Matte, J.P.: Multi-temperature representation of electron velocity distribution functions. I. Fits to numerical results. Phys. Plasmas 19, 102103 (2012)

    ADS  Google Scholar 

  • Al-Gwaiz, M.A.: Sturm-Liouville Theory and Its Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Amore, P.: A variational Sinc collocation method for strong-coupling problems. J. Phys. A: Math. Gen. 39, L349–L355 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  • Amore, P., Fernandez, F.M., Saenz, R.A., Salvo, K.: Collocation on uniform grids. J. Phys. A: Math. Theor. 42, 115302 (2009)

    ADS  MathSciNet  Google Scholar 

  • Andersen, K., Shuler, K.E.: On the relaxation of a hard sphere Rayleigh and Lorentz gas. J. Chem. Phys. 40, 633–650 (1964)

    ADS  MathSciNet  Google Scholar 

  • Andersen, H.C., Oppenheim, I., Shuler, K.E., Weiss, G.H.: Exact condition for the preservation of a canonical distribution in Markovian relaxation process. J. Math. Phys. 5, 522–536 (1964)

    ADS  MATH  MathSciNet  Google Scholar 

  • Anna, J.M., Kubarych, K.J.: Watching solvent friction impede ultrafast barrier crossings: a direct test of Kramers theory. J. Chem. Phys. 133, 174506 (2010)

    ADS  Google Scholar 

  • Avila, G., Carrington Jr, T.: Solving the Schrödinger equation using Smolyak interpolants. J. Chem. Phys. 139, 134114 (2013)

    ADS  Google Scholar 

  • Azaez, M., El Fekih, H., Hesthaven, J.S.: Spectral and High Order Methods for Partial Differential Equations-ICOSAHOM. Springer, New York (2012)

    Google Scholar 

  • Aziz, R.A., Slaman, M.J.: An examination of ab initio results for the helium potential energy curve. J. Chem. Phys. 94, 8047–8053 (1991)

    Google Scholar 

  • Bagchi, B., Fleming, G.R., Oxtoby, D.W.: Theory of electronic relaxation in solution in the absence of an activation barrier. J. Chem. Phys. 78, 7375–7385 (1983)

    ADS  Google Scholar 

  • Balint-Kurti, G.G., Pulay, P.: A new grid-based method for the direct computation of excited molecular vibrational-states: test application to formaldehyde. J. Mol. Struct. (Theochem) 341, 1–11 (1995)

    Google Scholar 

  • Basu, B., Jasperse, J.R., Strickland, D.J., Daniel, R.E.: Transport-theoretic model for the electron-proton-hydrogen atom aurora. J. Geophys. Res. 98, 21517–21532 (1993)

    ADS  Google Scholar 

  • Baye, D.: Constant-step Lagrange meshes for central potentials. J. Phys. B: At. Mol. Opt. Phys. 28, 4399–4412 (1995)

    ADS  MathSciNet  Google Scholar 

  • Baye, D.: Lagrange-mesh method for quantum-mechanical problems. Phys. Stat. Sol. B 243, 1095–1109 (2006)

    ADS  Google Scholar 

  • Baye, D., Heenen, P.H.: Generalized meshes for quantum-mechanical problems. J. Phys. A: Math. Gen. 19, 2041–2059 (1986)

    ADS  MATH  MathSciNet  Google Scholar 

  • Baye, D., Vincke, V.: Lagrange meshes from nonclassical orthogonal polynomials. Phys. Rev. E 59, 7195–7199 (1999)

    ADS  Google Scholar 

  • Berezhkovskii, A.M., Zitserman, V.Yu., Polimenob, A.: Numerical test of Kramers reaction rate theory in two dimensions. J. Chem. Phys. 105, 6342–6357 (1996)

    Google Scholar 

  • Bernstein, M., Brown, L.S.: Supersymmetry and the bistable Fokker-Planck equation. Phys. Rev. Lett. 52, 1933–1935 (1984)

    ADS  MathSciNet  Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    ADS  MATH  Google Scholar 

  • Bi, C., Chakraborty, B.: Rheology of granular materials: dynamics in a stress landscape. Philos. Trans. R. Soc. A 367, 5073–5090 (2009)

    ADS  MATH  Google Scholar 

  • Bicout, D.J., Szabo, A.: Entropic barriers, transition states, funnels, and exponential protein folding kinetics: a simple model. Protein Sci. 9, 452–465 (2000)

    Google Scholar 

  • Bicout, D.J., Berezhkovskii, A.M., Szabo, A.: Irreversible bimolecular reactions of Langevin particles. J. Chem. Phys. 114, 2293–2303 (2001)

    Google Scholar 

  • Binney, J., Tremaine, S.: Galactic Dynamics, 2nd edn. Princeton University Press, New Jersey (2008)

    Google Scholar 

  • Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  • Biró, T.S., Jakovác, A.: Power-law tails from multiplicative noise. Phys. Rev. Lett. 94, 132302 (2005)

    ADS  Google Scholar 

  • Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Google Scholar 

  • Blackmore, R.S.: (1985) Theoretical studies in stochastic processes. PhD thesis, UBC, http://circle.ubc.ca/handle/2429/25554

  • Blackmore, R., Shizgal, B.: Discrete ordinate method of solution of Fokker-Planck equations with nonlinear coefficients. Phys. Rev. A 31, 1855–1868 (1985a)

    ADS  Google Scholar 

  • Blackmore, R., Shizgal, B.: A solution of Kramers equation for the isomerization of n-butane in CCl\(_{4}\). J. Chem. Phys. 83, 2934–2941 (1985b)

    ADS  Google Scholar 

  • Blackmore, R., Weinert, U., Shizgal, B.: Discrete ordinate solution of a Fokker-Planck equation in laser physics. Trans. Theory Stat. Phys. 15, 181–210 (1986)

    ADS  MATH  MathSciNet  Google Scholar 

  • Blaise, P., Kalmykov, Y.P., Velcescu, A.A.: Extended diffusion in a double well potential: transition from classical to quantum regime. J. Chem. Phys. 137, 094105 (2012)

    ADS  Google Scholar 

  • Bobylev, A.V., Mossberg, E.: On some properties of linear and linearized Boltzmann collision operators for hard spheres. Kinet. Relat. Models 4, 521–555 (2008)

    MathSciNet  Google Scholar 

  • Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  • Boyd, T.J.M., Sanderson, J.S.: The Physics of Plasmas. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Braun, M., Sofianos, S.A., Papageorgiou, D.G., Lagaris, I.E.: An efficient Chebyshev-Lanczos method for obtaining eigensolutions of the Schrödinger equation on a grid. J. Comput. Phys. 126, 315–327 (1996)

    ADS  MATH  MathSciNet  Google Scholar 

  • Brey, J.J., Casado, J.M., Morillo, M.: Combined effects of additive and multiplicative noise in a Fokker-Planck model. Z. Phys. B—Condens. Matter 66, 263–269 (1987)

    ADS  Google Scholar 

  • Brinkmann, H.C.: Brownian motion in a field of force and the diffusion theory of chemical reactions. Physica A 22, 29–34 (1956)

    Google Scholar 

  • Buet, C., Dellacherie, S.: On the Chang Cooper scheme applied to a linear Fokker Planck equation. Commun. Math. Sci. 8, 1079–1090 (2010)

    MATH  MathSciNet  Google Scholar 

  • Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006b)

    Google Scholar 

  • Cartling, B.: Kinetics of activated processes from nonstationary solutions of the Fokker-Planck equation for a bistable potential. J. Chem. Phys. 87, 2638–2648 (1987)

    ADS  Google Scholar 

  • Cassam-Chenaï, P., Liévin, J.: Ab initio calculation of the rotational spectrum of methane vibrational ground state. J. Chem. Phys. 136, 174309 (2012)

    ADS  Google Scholar 

  • Chandrasekhar, S.: Principles of Stellar Dynamics. Dover, New York (1942)

    Google Scholar 

  • Chandrasekhar, S.: Brownian motion, dynamical friction, and stellar dynamics. Rev. Mod. Phys. 21, 383–388 (1949)

    ADS  MATH  MathSciNet  Google Scholar 

  • Chang, J.C., Cooper, G.: A practical difference scheme for Fokker-Planck equations. J. Comput. Phys. 6, 1–16 (1970)

    ADS  MATH  Google Scholar 

  • Chavanis, P.H.: Relaxation of a test particle in systems with long-range interactions: diffusion coefficient and dynamical friction. Eur. J. Phys. B 52, 61–82 (2006)

    ADS  Google Scholar 

  • Chen, H., Shizgal, B.D.: A spectral solution of the Sturm-Liouville equation: comparison of classical and nonclassical basis sets. J. Comput. Appl. Math. 136, 17–35 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  • Coffey, W.T., Kalmykov, Y.P., Titov, S.V., Cleary, L.: Quantum effects in the Brownian motion of a particle in a double well potential in the overdamped limit. J. Chem. Phys. 131, 084101 (2009)

    ADS  Google Scholar 

  • Colbert, D.T., Miller, W.H.: A novel discrete variable representation for quantum-mechanical reactive scattering via the S-Matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992)

    ADS  Google Scholar 

  • Collier, M.R.: Are magnetospheric suprathermal particle distributions (\(\kappa \) functions) inconsistent with maximum entropy considerations. Adv. Space Res. 33, 2108–2112 (2004)

    ADS  Google Scholar 

  • Comtet, A., Bandrauk, A.D., Campbell, D.K.: Exactness of semiclassical bound-state energies for supersymmetric quantum-mechanics. Phys. Lett. B 150, 159–162 (1985)

    ADS  MathSciNet  Google Scholar 

  • Cooper, F., Ginocchio, J.N., Khare, A.: Relationship between supersymmetry and solvable potentials. Phys. Rev. D 36, 2458–2473 (1987)

    ADS  MathSciNet  Google Scholar 

  • Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    ADS  MathSciNet  Google Scholar 

  • Corngold, N.: Kinetic equation for a weakly coupled test particle. II. Approach to equilibrium. Phys. Rev. A 24, 656–666 (1981)

    ADS  Google Scholar 

  • Crew, G.B., Chang, T.S.: Asymptotic theory of ion conic distributions. Phys. Fluids 28, 2382–2394 (1985)

    ADS  MATH  Google Scholar 

  • Cukier, R.I., Lakatos-Lindenberg, K., Shuler, K.E.: Orthogonal polynomial solutions of the Fokker-Planck equation. J. Stat. Phys. 9, 137–144 (1973)

    ADS  Google Scholar 

  • Dawes, R., Carrington Jr, T.: A multidimensional discrete variable representation basis obtained by simultaneous diagonalization. J. Chem. Phys. 121, 726–736 (2004)

    ADS  Google Scholar 

  • Dawes, R., Carrington, T.: How to choose one-dimensional basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the one-dimensional functions: energy levels of coupled systems with as many as 16 coordinates. J. Chem. Phys. 122, 134101 (2005)

    Google Scholar 

  • Dekker, H., van Kampen, N.G.: Eigenvalues of a diffusion process with a critical point. Phys. Lett. A 73, 374–376 (1979)

    Google Scholar 

  • Demeio, L., Shizgal, B.: Time dependent nucleation. II. A semiclassical approach. J. Chem. Phys. 98, 5713–5719 (1993a)

    Google Scholar 

  • Demeio, L., Shizgal, B.: A uniform Wentzel-Kramers-Brillouin approach to electron transport in molecular gases. J. Chem. Phys. 99, 7638–7651 (1993b)

    ADS  Google Scholar 

  • Derevianko, A., Luc-Koenig, E., Masnou-Seeuws, F.: Application of B-splines in determining the eigenspectrum of diatomic molecules: robust numerical description of Halo-state and Feshbach molecules. Can. J. Phys. 87, 67–74 (2009)

    ADS  Google Scholar 

  • Deville, M.O., Fisher, P.F., Mund, E.H.: High Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Dickinson, A.S., Certain, P.R.: Calculation of matrix elements for one-dimensional quantum-mechanical problems. J. Chem. Phys. 49, 4209–4211 (1968)

    ADS  MathSciNet  Google Scholar 

  • Drozdov, A.N.: Two novel approaches to the Kramers rate problem in the spatial diffusion regime. J. Chem. Phys. 111, 6481–6491 (1999)

    ADS  Google Scholar 

  • Drozdov, A.N., Tucker, S.C.: An improved reactive flux method for evaluation of rate constants in dissipative systems. J. Chem. Phys. 115, 9675–9684 (2001)

    ADS  Google Scholar 

  • Dunkel, J., Hänggi, P.: Relativistic Brownian motion. Phys. Rep. 471, 1–73 (2009)

    ADS  MathSciNet  Google Scholar 

  • Dutt, R., Khare, A., Sukhatme, U.P.: Supersymmetry, shape invariance and exactly solvable potentials. Am. J. Phys. 56, 163–168 (1988)

    ADS  Google Scholar 

  • Dyatko, N.A.: Negative electron conductivity in gases and semiconductors. J. Phys.: Conf. Ser. 71, 012005 (2007)

    ADS  Google Scholar 

  • Dyatko, N.A., Loffhagen, D., Napartovich, A.P., Winkler, R.: Negative electron mobility in attachment dominated plasmas. Plasma Chem. Plasma Proc. 21, 421–439 (2001)

    Google Scholar 

  • Dziekan, P., Lemarchand, A., Nowakowski, B.: Master equation for a bistable chemical system with perturbed particle velocity distribution function. Phys. Rev. 85, 021128 (2012)

    ADS  Google Scholar 

  • Echave, J., Clary, D.C.: Potential optimized discrete variable representation. Chem. Phys. Lett. 190, 225–230 (1992)

    Google Scholar 

  • Echim, M.M., Lemaire, J., Lie-Svendsen, O.: A review on solar wind modeling: kinetic and fluid aspects. Surv. Geophys. 32, 1–70 (2011)

    ADS  Google Scholar 

  • Einstein, A.: Zur theorie der brownschen bewegung. Ann. Phys. 19, 371–381 (1906)

    MATH  Google Scholar 

  • Feit, M.D., Fleck Jr, J.A., Steiger, A.: Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 47, 412–433 (1982)

    ADS  MATH  MathSciNet  Google Scholar 

  • Feizi, H., Rajabi, A.A., Shojaei, M.R.: Supersymmetric solution of the Schrödinger equation for the Woods-Saxon potential using the Pekeris approximation. Acta Phys. Pol. B 42, 2143–2152 (2011)

    Google Scholar 

  • Felderhof, B.U.: Diffusion in a bistable potential. Phys. A 387, 5017–5023 (2008)

    Google Scholar 

  • Fokker, A.D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Ann. Phys. 348, 810–820 (1914)

    Google Scholar 

  • Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Francisco, J.F.: Internal rotational barriers of ClOOCl. J. Chem. Phys. 103, 8921–8923 (1995)

    ADS  Google Scholar 

  • Frank, T.D.: Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: applications to financial physics and neurophysics. Phys. Lett. A 360, 552–562 (2007)

    ADS  Google Scholar 

  • Fricke, S.H., Balantekin, A.B., Hatchell, P.J., Uzer, T.: Uniform semiclassical approximation to supersymmetric quantum mechanics. Phys. Rev. A 37, 2797–2804 (1988)

    ADS  MathSciNet  Google Scholar 

  • Friesner, R.A., Bentley, J.A., Menou, M., Leforestier, C.: Adiabatic pseudospectral methods for multidimensional vibrational potentials. J. Chem. Phys. 99, 324–335 (1993)

    ADS  Google Scholar 

  • Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (2003)

    Google Scholar 

  • Garrity, D.K., Skinner, J.L.: Effect of potential shape on isomerization rate constants for the BGK model. Chem. Phys. Lett. 95, 46–51 (1983)

    ADS  Google Scholar 

  • Gary, S.P.: Theory of Space Plasma Microinstabilities. Cambrigde University Press, Cambridge (1993)

    Google Scholar 

  • Gillespie, G.T.: Approximating the master equation by Fokker-Planck type equations for single variable chemical systems. J. Chem. Phys. 72, 5363–5370 (1980)

    Google Scholar 

  • Gillespie, G.T.: Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54, 2084–2091 (1996)

    ADS  MathSciNet  Google Scholar 

  • Gitterman, M.: Simple treatment of correlated multiplicative and additive noises. J. Phys. A: Math. Gen. 32, L293–L297 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  • Gomes, P.C., Pacios, L.F.: The torsional barrier of ClOOCl. J. Phys. Chem. 100, 8731–8736 (1996)

    Google Scholar 

  • Gomez-Ullate, D., Kamran, N., Milson, R.: An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 359, 352–376 (2009)

    Google Scholar 

  • Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    MATH  Google Scholar 

  • Guantes, R., Farantos, S.C.: High order finite difference algorithms for solving the Schrödinger equation. J. Chem. Phys. 111, 10827–10835 (1999)

    ADS  Google Scholar 

  • Gunther, L., Weaver, D.L.: Monte Carlo simulation of Brownian motion with viscous drag. Am. J. Phys. 46, 543–545 (1978)

    ADS  Google Scholar 

  • Hagelaar, G.J.M., Pitchford, L.C.: Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14, 722–733 (2005)

    ADS  Google Scholar 

  • Hamilton, I.P., Light, J.C.: On distributed Gaussian bases for simple model multidimensional vibrational problems. J. Chem. Phys 84, 306–317 (1986)

    ADS  Google Scholar 

  • Hänggi, P., Talkner, P., Borkovec, M.: Reaction rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    ADS  Google Scholar 

  • Harris, D.O., Engerholm, G.G., Gwinn, W.D.: Calculation of matrix elements for one-dimensional quantum-mechanical problems and the application to anharmonic oscillators. J. Chem. Phys. 43, 1515–1517 (1965)

    ADS  Google Scholar 

  • Hasegawa, A., Mima, K., Duong-van, M.: Plasma distribution function in a superthermal radiation field. Phys. Rev. Lett. 54, 2608–2610 (1985)

    Google Scholar 

  • Henon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    ADS  MathSciNet  Google Scholar 

  • Hinton, F.L.: Collisional transport in plasma. In: Galeev, A.A., Sagdeev, R.Z. (eds.) Handbook of Physics, Basic Plasma Physics, pp. 147–197. Elsevier, The Netherlands (1983)

    Google Scholar 

  • Hoare, M.R.: The linear gas. Adv. Chem. Phys. 20, 135–214 (1971)

    Google Scholar 

  • Hoare, M.R., Kaplinsky, C.H.: Linear hard sphere gas: variational eigenvalue spectrum of the energy kernel. J. Chem. Phys. 52, 3336–3353 (1970)

    Google Scholar 

  • Hoffman, D.K., Wei, G.W., Zhang, D.S., Kouri, D.J.: Interpolating distributed approximating functionals. Phys. Rev. E 57, 6152–6160 (1998)

    ADS  Google Scholar 

  • Johnson, B.R.: New numerical methods applied to solving the one dimensional eigenvalue problem. J. Chem. Phys. 67, 4086–4093 (1977)

    ADS  Google Scholar 

  • Kallush, S., Kosloff, R.: Improved methods for mapped grids: applied to highly excited vibrational states of diatomic molecules. Chem. Phys. Lett. 433, 221–227 (2006)

    ADS  Google Scholar 

  • Karney, C.F.F.: Fokker-Planck and quasi-linear codes. Comput. Phys. Rep. 4, 183–244 (1986)

    ADS  Google Scholar 

  • Knessl, C., Mangel, M., Matkowsky, B.J., Schuss, Z., Tier, C.: Solution of Kramers-Moyal equations for problems in chemical physics. J. Chem. Phys. 81, 1285–1293 (1984)

    ADS  Google Scholar 

  • Knierim, K.D., Waldman, M., Mason, E.A.: Moment theory of electron thermalization in gases. J. Chem. Phys. 77, 943–950 (1982)

    Google Scholar 

  • Kokoouline, V., Dulieu, O., Kosloff, R., Masnou-Seeuws, F.: Mapped Fourier methods for long-range molecules: application to perturbations in the Rb\(_{2}\)(0\(^+_{u}\)) photoassociation spectrum. J. Chem. Phys. 110, 9865–9876 (1999)

    ADS  Google Scholar 

  • Koput, J., Carter, S., Handy, N.C.: Ab initio prediction of the vibrational-rotational energy levels of hydrogen peroxide and its isotopomers. J. Chem. Phys. 115, 8345–8350 (2001)

    ADS  Google Scholar 

  • Koura, K.: Nonequilibrium electron velocity distribution and temperature in thermalization of low energy electrons in molecular hydrogen. J. Chem. Phys. 79, 3367–3372 (1983)

    ADS  Google Scholar 

  • Kowari, K., Demeio, L., Shizgal, B.: Electron degradation and thermalization in CH\(_4\) gas. J. Chem. Phys. 97, 2061–2074 (1992)

    ADS  Google Scholar 

  • Kowari, K., Shizgal, B.: On the existence of a steady electron distribution for systems with electron attachment: Ar-CCl\(_4\) mixtures. Chem. Phys. Lett. 260, 365–370 (1996)

    ADS  Google Scholar 

  • Kowari, K.-I., Leung, K., Shizgal, B.D.: The coupling of electron thermalization and electron attachment in CCl\(_{4}\)/Ar and CCl\(_{4}\)/Ne mixtures. J. Chem. Phys. 108, 1587–1600 (1998)

    ADS  Google Scholar 

  • Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    ADS  MATH  MathSciNet  Google Scholar 

  • Kuczka, J., Hänggi, P., Gadmski, A.: Non-Markovian process driven quadratic noise: Kramers-Moyal expansion and Fokker-Planck modeling. Phys. Rev. E 51, 2933–2938 (1995)

    Google Scholar 

  • Kumar, K., Skullerud, H.R., Robson, R.E.: Kinetic theory of charged particle swarms in neutral gases. Aust. J. Phys. 33, 343–448 (1980)

    ADS  MathSciNet  Google Scholar 

  • Kuščer, I., Williams, M.M.R.: Relaxation constants of a uniform hard sphere gas. Phys. Fluids 10, 1922–1927 (1967)

    ADS  Google Scholar 

  • Kustova, E.V., Giordano, D.: Cross-coupling effects in chemically non-equilibrium viscous compressible flows. Chem. Phys. 379, 83–91 (2011)

    ADS  Google Scholar 

  • Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edn. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  • Larsen, E.W., Livermore, C.D., Pomraning, G.C., Sanderson, J.G.: Discretization methods for one-dimensional Fokker-Planck operators. J. Comput. Phys. 61, 359–390 (1985)

    Google Scholar 

  • Larson, R.S., Kostin, M.D.: Kramers’s theory of chemical kinetics: eigenvalue and eigenfunction analysis. J. Chem. Phys. 69, 4821–4829 (1978)

    ADS  Google Scholar 

  • Lauvergnat, D., Nauts, A.: Quantum dynamics with sparse grids: a combination of Smolyak scheme and cubature. Application to methanol in full dimensionality. Spectrochim. Acta, A 119, 18–25 (2014)

    Google Scholar 

  • Lax, M.: Classical noise IV: Langevin method. Rev. Mod. Phys. 38, 541–566 (1966)

    ADS  MATH  MathSciNet  Google Scholar 

  • Layton, E.G.: The Fourier-grid formalism: philosophy and application to scattering problems using R-matrix theory. J. Phys. B: At. Mol. Opt. Phys. 36, 2501–2522 (1993)

    ADS  Google Scholar 

  • Le, H.M., Huynh, S., Raff, L.: Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting. J. Chem. Phys. 131, 014107 (2009)

    ADS  Google Scholar 

  • Leblanc, F., Hubert, D.: A generalized model for the proton expansion in astrophysical winds. I. The velocity distribution function representation. Astrophys. J. 483, 464–474 (1997)

    ADS  Google Scholar 

  • Lemou, M., Chavanis, P.H.: Escape of stars from gravitational clusters in the Chandrasekhar model. Phys. A 389, 1021–1040 (2010)

    Google Scholar 

  • Leubner, M.P., Vörös, Z.: A nonextensive entropy approach to solar wind intermittency. Astrophys. J. 618, 547–555 (2005)

    ADS  Google Scholar 

  • Leung, K., Shizgal, B.D., Chen, H.: The quadrature discretization method QDM in comparison with other numerical methods of solution of the Fokker-Planck equation for electron thermalization. J. Math. Chem. 24, 291–319 (1998)

    MATH  MathSciNet  Google Scholar 

  • Lie-Svendsen, O., Rees, M.H.: An improved kinetic model for the polar outflow of a minor ion. J. Geophys. Res. 101, 2415–2433 (1996)

    Google Scholar 

  • Light, J.C., Hamilton, I.P., Lill, J.V.: Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 82, 1400–1409 (1985)

    ADS  Google Scholar 

  • Lightman, A.P., Shapiro, S.L.: The dynamical evolution of globular clusters. Rev. Mod. Phys. 50, 437–481 (1978)

    ADS  Google Scholar 

  • Lin, S.Y., Guo, H.: Exact quantum mechanical calculations of rovibrational energy levels of hydrogen peroxide (HOOH). J. Chem. Phys. 119, 5867–5873 (2003)

    ADS  Google Scholar 

  • Lin, S.R., Robson, R.E., Mason, E.A.: Moment theory of electron drift and diffusion in neutral gases in an electrostatic field. J. Chem. Phys. 71, 3483–3498 (1979)

    ADS  Google Scholar 

  • Lindenfeld, M.J., Shizgal, B.: The Milne problem: a study of the mass dependence. Phys. Rev. A27, 1657–1670 (1983)

    ADS  Google Scholar 

  • Littlejohn, R.G., Cargo, M., Carrington Jr, T., Mitchell, K.A., Poirier, B.: A general framework for discrete variable representation basis sets. J. Chem. Phys. 116, 8691–8703 (2002)

    Google Scholar 

  • Livadiotis, G., McComas, D.J.: Beyond Kappa distributions: exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105 (2009)

    ADS  Google Scholar 

  • Lo, J.Q.-W., Shizgal, B.D.: Spectral convergence of the quadrature discretization method in the solution of the Schrödinger and Fokker-Planck equations: comparison with Sinc methods. J. Chem. Phys. 125, 194108 (2006)

    Google Scholar 

  • Lo, J.Q.-W., Shizgal, B.D.: An efficient mapped pseudospectral method for weakly bound states: vibrational states of He\(_{2}\), Ne\(_{2}\), Ar\(_{2}\) and Cs\(_{2}\). J. Phys. B: At. Mol. Opt. Phys. 41, 185103 (2008a)

    Google Scholar 

  • Lo, J.Q.-W., Shizgal, B.D.: Pseudospectral methods of solution of the Schrödinger equation. J. Math. Chem. 44, 787–801 (2008b)

    Google Scholar 

  • Lutsko, J.F., Boon, J.P.: Questioning the validity of non-extensive thermodynamics for classical Hamiltonian systems. EPL 95, 20006 (2011)

    ADS  Google Scholar 

  • Lynch, V.A., Mielke, S.L., Truhlar, D.G.: Accurate vibrational-rotational partition functions and standard-state free energy values for H\(_2\)O\(_2\) from Monte Carlo path-integral calculations. J. Chem. Phys. 121, 5148–5162 (2004)

    ADS  Google Scholar 

  • Ma, C.-Y., Summers, D.: Formation of power-law energy spectra in space plasmas by stochastic acceleration due to Whistler-mode waves. Geophys. Res. Lett. 26, 1121–1124 (1999)

    ADS  Google Scholar 

  • Magnus, A.P., Pierrard, V.: Formulas for the recurrence coefficients of orthogonal polynomials related to Lorentzian-like weights. J. Comput. Appl. Math. 219, 431–440 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  • Marechal, E., Moreau, M.: On the microscopic kinetic theory of a chemical reaction in the limit of high collision frequency. Mol. Phys. 51, 133–140 (1984)

    ADS  Google Scholar 

  • Marsch, E.: Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1–100 (2006)

    ADS  Google Scholar 

  • Marston, C.C., Balint-Kurti, G.G.: The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys. 91, 3571–3576 (1989)

    ADS  MathSciNet  Google Scholar 

  • Mazziotti, D.A.: Spectral difference methods for solving differential equations. Chem. Phys. Lett. 299, 473–480 (1999)

    ADS  Google Scholar 

  • McMahon, D.R.A., Shizgal, B.: Hot-electron zero-field mobility and diffusion in rare-gas moderators. Phys. Rev. A 31, 1894–1905 (1985)

    ADS  Google Scholar 

  • Meshkov, V.V., Stolyarov, A.V., Le Roy, R.J.: Adaptive analytical mapping procedure for efficiently solving the radial Schrödinger equation. Phys. Rev. A 78, 052510 (2008)

    ADS  Google Scholar 

  • Meyer-Vernet, N.: Large scale structure of planetary environments: the importance of not being Maxwellian. Planet. Space Sci. 49, 247–260 (2001)

    ADS  Google Scholar 

  • Mielke, S.L., Chakraborty, A., Truhlar, D.G.: Vibrational configuration interaction using a tiered multimode scheme and tests of approximate treatments of vibrational angular momentum coupling: a case study for Methane. J. Phys. Chem. A 117, 7327–7343 (2013)

    Google Scholar 

  • Miller, S.C., Good Jr, R.H.: A WKB-type approximation to the Schrödinger equation. Phys. Rev. 91, 174–179 (1953)

    Google Scholar 

  • Mintzer, D.: Generalized orthogonal polynomial solutions of the Boltzmann equation. Phys. Fluids 8, 1076–1090 (1965)

    ADS  MATH  Google Scholar 

  • Mitchner, M., Kruger, C.H.J.: Partially Ionized Gases. Wiley, New York (1973)

    Google Scholar 

  • Montgomery, J.A., Chandler, D., Berne, B.J.: Trajectory analysis of a kinetic theory for isomerization dynamics in condensed phases. J. Chem. Phys. 70, 4056–4066 (1979)

    ADS  MathSciNet  Google Scholar 

  • Morse, P.M.: Diatomic molecules according to the wave mechanics II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    ADS  MATH  Google Scholar 

  • Mozumder, A.: Electron thermalization in gases. III epithermal electron scavenging in rare gases. J. Chem. Phys. 74, 6911–6921 (1981)

    ADS  Google Scholar 

  • Mozumder, A.: Fundamentals of Radiation Chemistry. Academic Press, London (1999)

    Google Scholar 

  • Müller, P.L.G., Hernandez, R., Benito, R.M., Borondo, F.: Detailed study of the direct numerical observation of the Kramers turnover in the LiNC\({\rightleftharpoons }\)LiCN isomerization rate. J. Chem. Phys. 137, 204301 (2012)

    ADS  Google Scholar 

  • Nauenberg, M.: Critique of q-entropy for thermal statistics. Phys. Rev. E 67, 036114 (2003)

    ADS  Google Scholar 

  • Nicholson, D.R.: Introduction to Plasma Theory. Wiley, New York (1983)

    Google Scholar 

  • Nicolis, C.: Stochastic aspects of climatic transitions—response to a periodic forcing. Tellus 34, 1–9 (1982)

    ADS  MathSciNet  Google Scholar 

  • Nicolis, C., Nicolis, G.: Stochastic aspects of climatic transitions—additive fluctuations. Tellus 33, 225–234 (1981)

    ADS  MathSciNet  Google Scholar 

  • Noid, D.W., Marcus, R.A.: Semiclassical calculation of bound states in a multidimensional system for nearly 1:1 degenerate systems. J. Chem. Phys. 67, 559–567 (1977)

    ADS  Google Scholar 

  • ONeil, S.V., Reinhardt, W.P.: Photoionization of molecular hydrogen. J. Chem. Phys. 69, 2126–2142 (1978)

    Google Scholar 

  • Park, B.T., Petrosian, V.: Fokker-Planck equations of stochastic acceleration: a study of numerical methods. Astrophys. J. Suppl. Ser. 103, 225–267 (1996)

    ADS  Google Scholar 

  • Parker, E.N.: Dynamical theory of the solar wind. Space Sci. Rev. 4, 666–708 (1965)

    ADS  Google Scholar 

  • Parrish, R.M., Hohenstein, E.G., Martnez, T.J., Sherrill, C.D.: Discrete variable representation in electronic structure theory: quadrature grids for least-squares tensor hypercontraction. J. Chem. Phys. 138, 194107 (2013)

    ADS  Google Scholar 

  • Pasquetti, R., Rapetti, F.: Spectral element methods on triangles and quadrilaterals: comparisons and applications. J. Comput. Phys. 198, 349–362 (2004)

    ADS  MATH  Google Scholar 

  • Pastor, R.W., Karplus, M.: Inertial effects in butane stochastic dynamics. J. Chem. Phys. 91, 211–218 (1989)

    ADS  Google Scholar 

  • Paul, W., Baschnagel, J.: Stochastic Processes; From Physics to Finance, 2nd edn. Springer, Berlin (2013)

    MATH  Google Scholar 

  • Petrović, Z.L., Dujko, S., Marić, D., Malović, G., Nikitović, \({\breve{\rm Z}}\)., \({\breve{\rm S}}\)a\({\breve{\rm s}}\)i\({\breve{\rm c}}\), O., Jovanović, J., Stojanović, V., Radmilović-Radenović, M.: Measurement and interpretation of swarm parameters and their application in plasma modelling. J. Phys. D: Appl. Phys. 42, 194002 (2009)

    Google Scholar 

  • Pierrard, V., Lemaire, J.: A collisional model of the polar wind. J. Geophys. Res. 103, 11701–11709 (1998)

    ADS  Google Scholar 

  • Pierrard, V., Lazar, V.: Kappa distributions; theory and applications in space plasmas. Sol. Phys. 267, 153–174 (2010)

    ADS  Google Scholar 

  • Pierrard, V., Lamy, H., Lemaire, J.: Exospheric distributions of minor ions in the solar wind. J. Geophys. Res. 109, A02118 (2004)

    Google Scholar 

  • Pitchford, L.C., Phelps, A.V.: Comparative calculations of electron-swarm properties in N\(_{2}\) at moderate E/N values. Phys. Rev. A 25, 540–554 (1982)

    ADS  Google Scholar 

  • Planck, M.: Ueber einen satz der statistichen dynamik und eine erweiterung in der quantumtheorie. Sitzber. Preuß. Akad. Wiss. pp. 324–341 (1917)

    Google Scholar 

  • Pollak, E., Talkner, P.: Reaction rate theory: what it was, where is it today, and where is it going? Chaos 15, 026116 (2005)

    ADS  MathSciNet  Google Scholar 

  • Pollak, E., Ianconescu, R.: Finite barrier corrections to the PGH solution of Kramers turnover theory. J. Chem. Phys. 140, 154108 (2014)

    ADS  Google Scholar 

  • Pollak, E., Grabert, H., Hänggi, P.: Theory of activated rate processes for arbitrary frequency dependent friction: solution of the turnover problem. J. Chem. Phys. 91, 4073–4087 (1989)

    ADS  Google Scholar 

  • Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  • Reif, F.: Fundamentals of Statistical and Thermal Physics. Waveland Press, Illinois (2008)

    Google Scholar 

  • Reinhardt, W.P.: L\(^{2}\) discretization of atomic and molecular electronic continua: moment, quadrature and J-matrix techniques. Comput. Phys. Commun. 17, 1–21 (1979)

    ADS  Google Scholar 

  • Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  • Risken, H., Voigtlaender, K.: Solutions of the Fokker-Planck equation describing thermalization of neutrons in a heavy gas moderator. Z. Phys. B—Condens. Matter 54, 253–262 (1984)

    ADS  Google Scholar 

  • Risken, H., Till, F.: The Fokker-Planck equation: Methods of solution and applications, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  • Robson, R.E.: Introductory Transport Theory for Charges Particles in Gases. World Scientific, Singapore (2006)

    Google Scholar 

  • Robson, R.E., Ness, K.F.: Velocity distribution and transport coefficients of electron swarms in gases: spherical-harmonic decomposition of Boltzmann’s equation. Phys. Rev. A 33, 2068–2077 (1986)

    Google Scholar 

  • Rosenbluth, M., Macdonald, F.W.M., Judd, D.L.: Fokker-Planck equation for an inverse-square force. Phys. Rev. 107, 1–6 (1957)

    ADS  MATH  MathSciNet  Google Scholar 

  • Ross, J., Mazur, P.: Some deductions from a formal statistical mechanical theory of chemical kinetics. J. Chem. Phys. 35, 19–28 (1961)

    ADS  Google Scholar 

  • Ryckaert, J.-P., Bellemans, A.: Molecule dynamics of liquid alkanes. Faraday Discuss. Chem. Soc. 66, 95–106 (1978)

    Google Scholar 

  • Sakai, Y.: Quasifree electron transport under electric field in nonpolar simple-structured condensed matters. J. Phys. D: Appl. Phys. 40, R441–R452 (2007)

    ADS  Google Scholar 

  • Schindler, M., Talkner, P., Hänggi, P.: Escape rates in periodically driven Markov processes. Physica A 351, 40–50 (2005)

    Google Scholar 

  • Schulz, M., Lanzerotti, M.L.: Particle Diffusion in the Radiation Belts. Springer, Berlin (1974)

    Google Scholar 

  • Schwartz, C.: High-accuracy approximation techniques for analytic functions. J. Math. Phys. 26, 411–415 (1985)

    ADS  MATH  MathSciNet  Google Scholar 

  • Scudder, J.D.: Ion and electron suprethermal tail strengths in the transition region for the velocity filtration model of the corona. Astrophys. J. 427, 446–452 (1994)

    ADS  Google Scholar 

  • Shematovich, V.I., Bisikalo, D.V., Gérard, J.-C., Cox, C., Bougher, S.W.: Monte Carlo model of electron transport for the calculation of mars dayglow emissions. J. Geophys. Res. 113, E02011 (2008)

    ADS  Google Scholar 

  • Shizgal, B.: Eigenvalues of the Lorentz Fokker-Planck equation. J. Chem. Phys. 70, 1948–1951 (1979)

    ADS  Google Scholar 

  • Shizgal, B.: The coupling of electron thermalisation and electron attachment; SF\(_{6}\) and CC1\(_{4}\) in rare-gas moderators. J. Phys. B: At. Mol. Opt. Phys. 21, 1699–1715 (1988)

    ADS  Google Scholar 

  • Shizgal, B.: Negative differential conductivity of electrons in He-Xe and He-Kr mixtures. Chem. Phys. 147, 271–279 (1990)

    ADS  Google Scholar 

  • Shizgal, B.: Relaxation in ionized gases: the role of the spectrum of the collision operator. In: Beylich, A.E. (ed.) Proceedings of the 17th International Symposium on Rarefied Gas Dynamics, pp. 22–29. VCH Verlagsgesellschaft GmbH, Berlin (1991)

    Google Scholar 

  • Shizgal, B.: Spectral theory and the approach to equilibrium in a plasma. Trans. Theory Stat. Phys. 21, 645–665 (1992)

    ADS  Google Scholar 

  • Shizgal, B.D.: The quadrature discretization method (QDM) in the calculation of the rotational-vibrational transitions in rare gas dimers. J. Mol. Struct. (Theochem) 391, 131–139 (1997)

    Google Scholar 

  • Shizgal, B.D.: Coulomb collisional processes in space plasmas; relaxation of suprathermal particle distributions. Planet. Space Sci. 52, 923–933 (2004)

    ADS  Google Scholar 

  • Shizgal, B.D.: Suprathermal particle distributions in space physics: kappa distributions and entropy. Astrophys. Space Sci. 312, 227–237 (2007)

    Google Scholar 

  • Shizgal, B., Karplus, M.: Nonequilibrium contributions to the rate of reaction. I. Perturbation of the velocity distribution function. J. Chem. Phys. 52, 4262–4278 (1970)

    ADS  MathSciNet  Google Scholar 

  • Shizgal, B., Fitzpatrick, J.M.: Matrix elements of the linear Boltzmann collision operator for systems of two components at different temperatures. Chem. Phys. 6, 54–65 (1974)

    ADS  Google Scholar 

  • Shizgal, B., McMahon, D.R.A.: Electric field dependence of transient electron transport properties in rare gas moderators. Phys. Rev. A 32, 3669–3680 (1985)

    ADS  Google Scholar 

  • Shizgal, B., Blackmore, R.: A collisional kinetic theory of a plane parallel evaporating planetary atmosphere. Planet. Space Sci. 34, 279–291 (1986)

    ADS  Google Scholar 

  • Shizgal, B., Ness, K.: Thermalisation and annihilation of positrons in helium and neon. J. Phys. B: At. Mol. Phys. 20, 847–865 (1987)

    ADS  Google Scholar 

  • Shizgal, B., Barrett, J.C.: Time dependent nucleation. J. Chem. Phys. 91, 6506–6518 (1989)

    ADS  Google Scholar 

  • Shizgal, B.D., Chen, H.: The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions. J. Chem. Phys. 104, 4137–4150 (1996)

    ADS  Google Scholar 

  • Shizgal, B.D., Napier, D.G.: Nonequilibrium effects in reactive systems: the effect of reaction products and the validity of the Chapman-Enskog method. Physica A 223, 50–86 (1996)

    Google Scholar 

  • Shizgal, B.D., Chen, H.: The quadrature discretization method in the solution of the Fokker-Planck equation with nonclassical basis functions. J. Chem. Phys. 107, 8051–8063 (1997)

    ADS  Google Scholar 

  • Shizgal, B., McMahon, D.R.A., Viehland, L.A.: Thermalization of electrons in gases. Radiat. Phys. Chem. 34, 35–50 (1989)

    ADS  Google Scholar 

  • Shizgal, B., Weinert, U., Blackmore, R.: The QDM in the solution of the Kramers equation for symmetrical potentials. In: Beylich, A.E. (ed.) Proceedings of the 17th International Symposium on Rarefied Gas Dynamics, pp. 85–92. Wiley, Weinheim (1991)

    Google Scholar 

  • Shore, B.W.: Solving the radial Schrödinger equation by using cubic-spline basis functions. J. Chem. Phys. 58, 3855–3866 (1973)

    ADS  Google Scholar 

  • Shoub, E.C.: Failure of the Fokker-Planck approximation to the Boltzmann integral for 1/r potentials. Phys. Fluids 30, 1340–1352 (1987)

    ADS  MATH  Google Scholar 

  • Skinner, J,l, Wolynes, P.G.: General kinetic models of activated processes in condensed phases. J. Chem. Phys. 71, 4913–4927 (1980)

    Google Scholar 

  • Solomon, S.C.: Auroral particle transport using Monte Carlo and hybrid methods. J. Geophys. Res. 106, 107–116 (2001)

    ADS  Google Scholar 

  • Sospedra-Alfonso, R., Shizgal, B.D.: Kullback-Leibler entropy in the electron distribution shape relaxation for electron-atom thermalization. Phys. Rev. E 84, 041202 (2011)

    ADS  Google Scholar 

  • Sospedra-Alfonso, R., Shizgal, B.D.: Energy and shape relaxation in binary atomic systems with realistic quantum cross sections. J. Chem. Phys. 139, 044113 (2013)

    ADS  Google Scholar 

  • Spendier, K., Sugaya, S., Kenkre, V.M.: Reaction-diffusion theory in the presence of an attractive harmonic potential. Phys. Rev. E 88, 062142 (2013)

    ADS  Google Scholar 

  • Spitzer, L.J.: Physics of Fully Ionized Gases. Interscience, New York (1962)

    Google Scholar 

  • Spitzer, L.J.: Physical Processes in the Interstellar Medium. Wiley, New York (1998)

    Google Scholar 

  • Spitzer, L.J., Härm, R.: Evaporation of stars from open clusters. Astrophys. J. 127, 544–550 (1958)

    ADS  Google Scholar 

  • Stamnes, K.: Analytic approach to auroral electron transport and energy degradation. Planet. Space Sci. 28, 427–441 (1980)

    ADS  Google Scholar 

  • Stix, T.H.: Waves in Plasmas. Springer, New York (1992)

    Google Scholar 

  • Szabo, A., Schulten, K., Schulten, Z.: First passage time approach to diffusion controlled reactions. J. Chem. Phys. 72, 4350–4357 (1980)

    ADS  Google Scholar 

  • Tang, K.T., Toennies, J.P.: The van der Waals potentials between all the rare gas atoms from He to Rn. J. Chem. Phys. 118, 4976–4983 (2003)

    ADS  Google Scholar 

  • Travis, K.P., Searles, D.J.: Effect of solvation and confinement on the trans-gauche isomerization reaction in n-butane. J. Chem. Phys. 125, 164501 (2006)

    ADS  Google Scholar 

  • Treumann, R.A., Jaroschek, C.H., Scholer, M.: Stationary plasma states far from equilibrium. Phys. Plasmas 11, 1317–1325 (2004)

    ADS  Google Scholar 

  • Trunec, D., Španěl, P., Smith, D.: The influence of electron-electron collisions on electron thermalization in He and Ar afterglow plasmas. Chem. Phys. Lett. 372, 728–732 (2003)

    Google Scholar 

  • Tsallis, C.: Non-extensive thermostatics: brief review and comments. Phys. A 221, 277–290 (1995)

    MathSciNet  Google Scholar 

  • Tsallis, C.: Comment on Critique of q-entropy for thermal statistics. Phys. Rev. E 69, 038101 (2004)

    ADS  Google Scholar 

  • Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36, 823–841 (1930)

    ADS  MATH  Google Scholar 

  • van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North Holland, Amsterdam (2007)

    Google Scholar 

  • Viehland, L.A., Ranganathan, B., Shizgal, S.: Transient microwave conductivity of electrons in helium and argon. J. Chem. Phys. 88, 362–370 (1988)

    Google Scholar 

  • Vocks, C.: A kinetic model for ions in the solar corona including wave-particle interactions and Coulomb collisions. Astrophys. J. 568, 1017–1029 (2002)

    ADS  Google Scholar 

  • Voigtlaender, K., Risken, H.: Solutions of the Fokker-Planck equation for a double-well potential in terms of continued fractions. J. Stat. Phys. 40, 397–429 (1985)

    ADS  MathSciNet  Google Scholar 

  • Wei, H.: Ghost levels and near-variational forms of the discrete variable representation: application to H\(_2\)O. J. Chem. Phys. 106, 6885–6900 (1997)

    Google Scholar 

  • Wei, G.W.: Discrete singular convolution for the solution of the Fokker Planck equation. J. Chem. Phys. 110, 8930–8942 (1999)

    ADS  Google Scholar 

  • Wei, G.W.: Solving quantum eigenvalue problems by discrete singular convolution. J. Phys. B: At. Mol. Opt. Phys. 33, 343–352 (2000)

    ADS  Google Scholar 

  • Wei, G.W., Zhang, D.S., Kouri, D.J., Hoffman, D.K.: Lagrange distributed approximating functionals. Phys. Rev. Lett. 79, 775–779 (1997)

    Google Scholar 

  • Weideman, W.A.C.: Spectral methods based on non-classical polynomials. In: Gautschi, G., Golub, G.H., Opfer, G. (eds.) Approximations and Computation of Orthogonal Polynomials, pp. 239–251. birkhauser, Basel (1999)

    Google Scholar 

  • White, R.D., Dujko, S., Robson, R.E., Petrović, Z.L., McEachran, R.P.: Non-equilibrium transport of positron and electron swarms in gases and liquids. Plasma Sources Sci. Technol. 19, 034001 (2010)

    Google Scholar 

  • White, R.D., Robson, R.E.: Multiterm solution of a generalized Boltzmann kinetic equation for electron and positron transport in structured and soft condensed matter. Phys. Rev. E 84, 031125 (2011)

    ADS  Google Scholar 

  • Wigner, E.P.: A solution of Boltzmann’s equation for monoenergetic neutrons in an infinite medium. Technical Report AECD-3125, U.S. Atomic Energy Commission (1943)

    Google Scholar 

  • Wigner, E.P., Wilkins Jr, J.E.: Effect of temperature of the moderator on the velocity distribution of neutrons with numerical calculations for H as moderator. Technical Report AECD-2275, U.S. Atomic Energy Commission (1944)

    Google Scholar 

  • Wilkinson, M., Pumir, A.: Spherical Ornstein-Uhlenbeck process. J. Stat. Phys. 145, 113–142 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  • Willner, K., Dulieu, O., Masnou-Seeuws, F.: Mapped grid methods for long-range molecules and cold collisions. J. Chem. Phys. 120, 548–561 (2004)

    ADS  Google Scholar 

  • Wind, H.: Electron energy for H\(_2^+\) in the ground state. J. Chem. Phys. 42, 2371–2373 (1965)

    ADS  Google Scholar 

  • Yang, W., Peet, A.C.: The collocation method for bound solutions of the Schrödinger equation. Chem. Phys. Lett. 153, 98–104 (1988)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Shizgal .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shizgal, B. (2015). Spectral and Pseudospectral Methods of Solution of the Fokker-Planck and Schrödinger Equations. In: Spectral Methods in Chemistry and Physics. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9454-1_6

Download citation

Publish with us

Policies and ethics