Skip to main content

Bioactive Amino Acids, Peptides and Peptidomimetics Containing Silicon

  • Chapter
  • First Online:
Bio-Inspired Silicon-Based Materials

Part of the book series: Advances in Silicon Science ((ADSS,volume 5))

Abstract

Amino acids incorporating silicon have altered structural and physical properties relative to their carbon counterparts. When introduced into polypeptides, the resulting structures generally maintain biological activity, have enhanced lipophilicity and are often resistant to metabolism. Peptide analogs in which the backbone contains a silanediol group, can become an inhibitor of protease enzymes. Synthesis and uses of these structures are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birkofer L, Ritter A (1956) Angew Chem 68:461–462

    Article  CAS  Google Scholar 

  2. Mortensen M, Husmann R, Veri E, Bolm C (2009) Chem Soc Rev 38:1002–1010

    Article  CAS  Google Scholar 

  3. Cavelier F, Vivet B, Martinez J, Aubry A, Didierjean C, Vicherat A, Marraud M (2002) J Am Chem Soc 124:2917–2923

    Article  CAS  Google Scholar 

  4. Liu G, Sieburth SMcN (2005) Org Lett 7:665–668

    Article  CAS  Google Scholar 

  5. Sun H, Martin C, Kesselring D, Keller R, Moeller KD (2006) J Am Chem Soc 128:13761–13771

    Article  CAS  Google Scholar 

  6. Sun H, Moeller KD (2003) Org Lett 5:3189–3192

    Article  CAS  Google Scholar 

  7. Sun H, Moeller KD (2002) Org Lett 4:1547–1550

    Article  CAS  Google Scholar 

  8. Fessenden RJ, Fessenden JS (1967) Adv Drug Res 4:95–132

    CAS  Google Scholar 

  9. Tacke R, Wannagat U (1979) Top Curr Chem 84:1–75

    Article  CAS  Google Scholar 

  10. Fessenden RJ, Fessenden JS (1980) Adv Organomet Chem 18:275–299

    CAS  Google Scholar 

  11. Barcza S (1988) In: Corey ER, Corey JY, Gaspar P (eds) The value and new directions of silicon chemistry for obtaining bioactive compounds in silicon chemistry. Wiley, New York, pp 135–144

    Google Scholar 

  12. Tacke R, Linoh H (1989) In: Patai S, Rappoport Z (eds) Bioorganosilicon chemistry in the chemistry of organic silicon compounds. Wiley, New York, pp 1143–1206

    Google Scholar 

  13. Bains W, Tacke R (2003) Curr Opin Drug Discov Dev 6:526–543

    CAS  Google Scholar 

  14. Mills JS, Showell GA (2004) Expert Opin Investig Drugs 13:1149–1157

    Article  CAS  Google Scholar 

  15. Englebienne P, Hoonacker AV, Herst CV (2005) Drug Des Rev Online 10:654–671

    Google Scholar 

  16. Sieburth SMcN (2008) Bioactive organosilanes in gelest catalog. pp 76–83.

    Google Scholar 

  17. Lazareva LF (2011) Russ Chem Bull Int Ed 60:615–632

    Article  CAS  Google Scholar 

  18. Fessenden RJ, Hartman RA (1970) J Med Chem 13:52–54

    Article  CAS  Google Scholar 

  19. Fleming I, Dunoguès J, Smithers R (2004) The electrophilic substitution of allylsilanes and vinylsilanes in organic reactions. Organic Reactions (Wiley: New York) (1989), 37, 57–575

    Google Scholar 

  20. Franz AK, Woerpel KA (2000) Acc Chem Res 33:813–820

    Article  CAS  Google Scholar 

  21. Denmark SE, Wehrli D, Choi JY (2000) Org Lett 2:2491–2494

    Article  CAS  Google Scholar 

  22. Sunderhaus JD, Lam H, Dudley GB (2003) Org Lett 5:4571–4573

    Article  CAS  Google Scholar 

  23. Ottosson H, Steel PG (2006) Chemistry 12:1576–1585

    Article  CAS  Google Scholar 

  24. Brändström A (1959) Acat Chem Scand 13:619–622

    Article  Google Scholar 

  25. Woo DV, Christian JE, Schnell RC (1979) Can J Pharm Sci 14:12–14

    CAS  Google Scholar 

  26. Ohshita J, Tokunaga Y, Sakurai H, Kunai A (1999) J Am Chem Soc 121:6080–6081

    Article  CAS  Google Scholar 

  27. Tacke R, Popp F, Müller B, Theis B, Burschka C, Hamacher A, Kassack MU, Schepmann D, Wünsch B, Jurva U, Wellner E (2008) Chem Med Chem 3:152–164

    Article  CAS  Google Scholar 

  28. Tacke R, Heinrich T, Bertermann R, Burschka C, Hamacher A, Kassack MU (2004) Organometallics 23:4468–4477

    Article  CAS  Google Scholar 

  29. Johansson T, Weidolf L, Popp F, Tacke R, Jurva U (2010) Drug Metab Disp 38:73–83

    Article  CAS  Google Scholar 

  30. Bolm C, Kasyan A, Drauz K, Günther K, Raabe G (2000) Angew Chem Int Ed 39:2288–2290

    Article  CAS  Google Scholar 

  31. Tacke R, Merget M, Bertermann R, Bernd M, Beckers T, Reissmann T (2000) Organometallics 19:3486–3497

    Article  CAS  Google Scholar 

  32. Fitzi R, Seebach D (1988) Tetrahedron 44:5277–5292

    Article  CAS  Google Scholar 

  33. Myers AG, Gleason JL, Yoon T, Kung DW (1997) J Am Chem Soc 119:656–673

    Article  CAS  Google Scholar 

  34. Vivet B, Cavelier F, Martinez J (2000) Eur J Org Chem 5:807–811

    Google Scholar 

  35. Tacke R, Schmid T, Merget M (2005) Organometallics 24:1780–1783

    Article  CAS  Google Scholar 

  36. Reissmann T, Schally AV, Bouchard P, Riethmüller H, Engel J (2000) Hum Reprod Update 6:322–331

    Article  CAS  Google Scholar 

  37. Dalkas GA, Marchand D, Galleyrand J-C, Martinez J, Spyroulias GA, Cordopatis P, Cavelier FJ (2010) Peptide Sci 16:91–97

    Article  CAS  Google Scholar 

  38. Tokitoh N, Okazaki R (1998) In: Apeloig Y, Rappoport Z (eds) Recent advances in the chemistry of silicon-heteroatom multiple bonds in the chemistry of organic silicon compounds II. Wiley, New York, pp 1063–1103

    Google Scholar 

  39. Babine RE, Bender SL (1997) Chem Rev 97:1359–1472

    Google Scholar 

  40. Matchar DB, McCrory DC, Orlando LA, Patel MR, Patel UD, Patwardhan MB, Powers B, Samsa GP, Gray RN (2008) Ann Intern Med 148:16–29

    Article  Google Scholar 

  41. Gradman AH, Pinto R, Kad R (2008) Curr Opin Pharmacol 8:120–126

    Article  CAS  Google Scholar 

  42. Groll M, Berkers CR, Ploegh HL, Ovaa H (2006) Structure 14:451–456

    Article  CAS  Google Scholar 

  43. Erickson JW, Eissenstat MA (1999) In: Dunn BM (ed) HIV protease as a target for the design of antiviral agents for AIDS in proteases of infectious agents. Academic Press, New York, pp 1–60

    Google Scholar 

  44. Dunn B (2012) Proteinases as drug targets. The Royal Society of Chemistry, London

    Google Scholar 

  45. Lebrun JJ, Porte H (1991) Polysiloxanes. In: Bevington JC, Allen G (eds) Comprehensive polymer science V. Pergamon, New York, pp 593–609

    Google Scholar 

  46. Bunning JC, Lydon JE, Eaborn C, Jackson PM, Goodby JW, Gray GW (1982) J Chem Soc Faraday Trans 1(78):713–724

    Article  Google Scholar 

  47. Bone R, Vacca JP, Anderson PS, Holloway MK (1991) J Am Chem Soc 113:9382–9384

    Article  CAS  Google Scholar 

  48. Chen C-A, Sieburth SMcN, Glekas A, Hewitt GW, Trainor GL, Erickson-Viitanen S, Garber SS, Cordova B, Jeffry S, Klabe RM (2001) Chem Biol 8:1161–1166

    Article  CAS  Google Scholar 

  49. Kim J, Glekas A, Sieburth SMcN (2002) Bioorg Med Chem Lett 12:3625–3627

    Article  CAS  Google Scholar 

  50. Kim J, Sieburth SMcN (2004) J Org Chem 69:3008–3014

    Article  CAS  Google Scholar 

  51. Juers D H, Kim J, Matthews B W, Sieburth SMcN (2005) Biochemistry 44:16524–16528

    Article  CAS  Google Scholar 

  52. wa Mutahi M, Nittoli T, Guo L, Sieburth SMcN (2002) J Am Chem Soc 124:7363–7375

    Article  Google Scholar 

  53. Kim J, Hewitt G, Carroll P, Sieburth SMcN (2005) J Org Chem 70:5781–5789

    Article  CAS  Google Scholar 

  54. Christianson D W (2005) Acc Chem Res 38:191–201

    Article  CAS  Google Scholar 

  55. Decaluwé K, Pauwels B, Verpoest S, Van de Voorde J (2011) J Sex Med 8:3271–3290

    Article  Google Scholar 

  56. Kim JK, Sieburth SMcN (2012) J Org Chem 77:7701–7706

    Google Scholar 

  57. Fleming I, Henning R, Plaut H (1984) Chem Commun 29–31

    Google Scholar 

  58. Uhlig W (1996) Chem Ber 129:733–739

    Article  CAS  Google Scholar 

  59. Atherton E, Sheppard R C (1989) Solid phase peptide synthesis: a practical approach. IRL, Oxford, pp 13–23

    Google Scholar 

  60. Eaborn C J (1956) J Chem Soc 4858–4864

    Google Scholar 

  61. HernaÌndez D, Mose R, Skrydstrup T (2011) Org Lett 13:732–735

    Article  Google Scholar 

  62. Lickiss PD, Smith CM (1995) Coord Chem Rev 145:75–124

    Article  CAS  Google Scholar 

  63. Sekiguchi A, Lee VY, Nanjo M (2000) Coord Chem Rev 210:11–45

    Article  CAS  Google Scholar 

  64. Nielsen L, Lindsay KB, Faber J, Nielsen NC, Skrydstrup TJ (2007) Org Chem 72:10035–10044

    Article  CAS  Google Scholar 

  65. Eaborn CJ (1952) J Chem Soc 2840–2846

    Google Scholar 

  66. Sieburth SMcN, Nittoli T, Mutahi AM, Guo L (1998) Angew Chem Int Ed 37:812–814

    Article  CAS  Google Scholar 

  67. Blaser H U (1992) Chem Rev 92:935–952

    Article  CAS  Google Scholar 

  68. Evans DA, Urpi F, Somers TC, Clark JS, Bilodeau MT (1990) J Am Chem Soc 112:8215–8216

    Article  CAS  Google Scholar 

  69. Mignani S, Damour D, Bastart J, Manuel G (1995) Synth Commun 25:3855–3861

    Article  CAS  Google Scholar 

  70. Sen S, Purushotham M, Qi Y, Sieburth SMcN (2007) Org Lett 9:4963–4965

    Article  CAS  Google Scholar 

  71. Sen S, Singh S, Sieburth SMcN (2009) J Org Chem 74:2884–2886

    Article  CAS  Google Scholar 

  72. Soderquist JA, Vaquer J, Diaz MJ, Rane AM, Bordwell FG, Zhang S (1996) Tetrahedron Lett 37:2561–2564

    Article  CAS  Google Scholar 

  73. Roy A K (2007) Adv Organomet Chem 55:1–59

    Google Scholar 

  74. Ojima I, Li Z, Zhu J (1998) Recent advances in the hydrosilylation and related reactions, In: Apeloig Y, Rappoport Z (eds) The chemistry of organic silicon compounds II. Wiley, New York, pp 1687–1792

    Google Scholar 

  75. Mironov VF, Kozlikov VL, Fedotov NS (1969) Zh Obshch Khim 39:966–970

    CAS  Google Scholar 

  76. Bergens SH, Noheda P, Whelan J, Bosnich B (1992) J Am Chem Soc 114:2128–2135

    Article  CAS  Google Scholar 

  77. Berens U, Burk MJ, Gerlach A, Hems W (2000) Angew Chem Int Ed 39:1981–1984

    Article  CAS  Google Scholar 

  78. Bo Y, Singh S, Duong H Q, Cao C, Sieburth SMcN (2011) Org Lett 13:1787–1789

    Article  CAS  Google Scholar 

  79. Qi Y, Singh S Research Notes. Temple University

    Google Scholar 

  80. Dearden MJ, Firkin CR, Hermet JR, O’Brien PJ (2002) Am Chem Soc 124:11870–11871

    Article  CAS  Google Scholar 

  81. Robak MT, Herbage MA, Ellman JA (2010) Chem Rev 110:3600–3740

    Article  CAS  Google Scholar 

  82. Nielsen L, Skrydstrup T (2008) J Am Chem Soc 130:13145–13151

    Article  CAS  Google Scholar 

  83. Zhou P, Chen B, Davis FA (2004) Tetrahedron 60:8003–8030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott McN. Sieburth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sieburth, S. (2014). Bioactive Amino Acids, Peptides and Peptidomimetics Containing Silicon. In: Zelisko, P. (eds) Bio-Inspired Silicon-Based Materials. Advances in Silicon Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9439-8_8

Download citation

Publish with us

Policies and ethics