Skip to main content

Silicon in a Biological Environment

  • Chapter
  • First Online:

Part of the book series: Advances in Silicon Science ((ADSS,volume 5))

Abstract

Given that silicon is one of the most abundant elements on the planet it is natural to be curious how this element interacts with biological systems. This chapter very briefly examines the role that silicon plays in the natural environment and how modern scientists have drawn inspiration from Nature in designing new methodologies and materials based on silicon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    “The beast was made of silica! There must have been pure silicon in the sand, and it lived on that…It was silicon life!”.2

References

  1. Wells HG (1894) Saturday Rev 676

    Google Scholar 

  2. Weinbaum SG (2008) A martian odyssey: Stanley G. Weinbaum’s worlds of if. Wildeside Press, p 96

    Google Scholar 

  3. Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, New York

    Google Scholar 

  4. Doncaster AM, Walsh R (1979) J Chem Soc Chem Commun 904

    Google Scholar 

  5. Colvin EW (1988) Silicon reagents in organic synthesis. Academic Press, London p 1

    Google Scholar 

  6. Herron N (1989) Zeolite catalysts as enzyme mimics: toward silicon-based life? Biocatal Biomim (ACS Symp Ser) 392:141–154

    Article  CAS  Google Scholar 

  7. Leng MJ, Swann GEA, Hodson MJ, Tyler JJ, Patwardhan SV, Sloane HJ (2009) Silicon 1:65–77

    Article  CAS  Google Scholar 

  8. Schroeder HC, Brandt D, Schlossmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Mueller WEG (2007) Naturwissenschaften 94:339–359

    Article  CAS  Google Scholar 

  9. Coradin T, Lopez PJ (2003) Chem Bio Chem 4:251–259

    Article  CAS  Google Scholar 

  10. Sangster AG, Hodson MJ, Tubb HJ (2001) Stud Plant Sci 8:85–113

    Article  CAS  Google Scholar 

  11. Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG (2008) Nat Prod Rep 25:455–474

    Article  Google Scholar 

  12. Vermeire M-L, Kablan L, Dorel M, Delvaux B, Risède J-M, Legrève A (2011) Eur J Plant Pathol 131:621–630

    Article  CAS  Google Scholar 

  13. Faisal S, Callis KL, Slot M, Kitajima K (2012) Botany 90:1058–1064

    Article  CAS  Google Scholar 

  14. Correa RS, Moraes JC, Auad AM, Carvalho GA (2005) Neotrop Entomol 34:429–433

    Article  CAS  Google Scholar 

  15. Costa RR, Moraes JC (2002) Ecossistema 27:37–39

    Google Scholar 

  16. Basagli MA, Moraes JC, Carvalho GA, Ecole CC, Goncalves-Gervasio R de CR (2003) Neotrop Entomol 32:659–663

    Article  CAS  Google Scholar 

  17. Chen W, Yao X, Cai K, Chen J (2011) Biol Trace Elem Res 142:67–76

    Article  CAS  Google Scholar 

  18. Law C, Exley C (2011) BMC Plant Biol 11:112–120

    Article  CAS  Google Scholar 

  19. Vasanthi N, Saleena LM, Anthoni RS (2012) World Appl Sci J 17:1425–1440

    CAS  Google Scholar 

  20. Detmann KC, Araujo WL, Martins SCV, Fernie AR, Da Matta FM (2013) Plant Signal Behav 8:e22523/71–e22523/74

    Google Scholar 

  21. Epstein E (2009) Ann Appl Biol 155:155–160

    Google Scholar 

  22. Van Soest PJ (2006) Anim Feed Sci Technol 130:137–171

    Google Scholar 

  23. Reynolds OL, Keeping MG, Meyer JH (2009) Ann Appl Biol 155:171–186

    Google Scholar 

  24. Massey FP, Ennos AR, Hartley SE (2006) J Anim Ecol 75:595–603

    Google Scholar 

  25. Van Bockhaven J, De Vleesschauwer D, Höfte M (2013) J Exp Bot 64:1281–1293

    Google Scholar 

  26. Watanabe S, Shimoi E, Ohkama N, Hayashi H, Yoneyama T, Yazaki J, Fujii F, Shinbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kiuchi S, Fujiwara T (2003) Soil Sci Plant Nutr 50:1273–1276

    Google Scholar 

  27. Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR (2006) Proc Natl Acad Sci U S A 103:17554–17559

    Google Scholar 

  28. Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Quéguiner B (1995) Science 268:375–379

    Google Scholar 

  29. Lopez PJ, Desclés J, Allen AE, Bowler C (2005) Curr Opinion Biotechnol 16:180–186

    Google Scholar 

  30. Ezzati J, Dolatabadi N, de la Guardia M (2011) Trends Anal Chem 30:1538–1548

    Google Scholar 

  31. Tacke R (1999) Angew Chem Int Ed 38:3015–3018

    Google Scholar 

  32. Hildebrand M (2008) Chem Rev 108:4855–4874

    Google Scholar 

  33. Hildebrand M (2003) Prog Org Coatings 47:256–266

    Google Scholar 

  34. Sumper M, Brunner E (2008) Chem Bio Chem 9:1187–1194

    Google Scholar 

  35. Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009) Appl Microbiol Biotechnol 84:607–616

    Google Scholar 

  36. Kröger N, Deutzmann R, Sumper M (1999) Science 286:1129–1132

    Google Scholar 

  37. DeJong JL (2013) Exploring the silicon substrate tolerance of the diatom nitzshia curvilineata. Undergraduate Thesis, Brock University, Department of Chemistry, St. Catharines, Ontario, Canada

    Google Scholar 

  38. The author would like to thank Renata Zavadil of Canmet Materials, Hamilton, Ontario, Canada for her assistance in acquiring the SEM image

    Google Scholar 

  39. Trevors JT (1997) Antonie van Leeuwenhoek 71:271–276

    Google Scholar 

  40. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Proc Natl Acad Sci U S A 95:6234–6238

    Google Scholar 

  41. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci U S A 96:361–365

    Google Scholar 

  42. Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chem Int Ed 38:780–782

    Google Scholar 

  43. Morse DE (1999) Trends Biotechnol 17:230–232

    Google Scholar 

  44. Knoche M (1994) Weed Res 34:221–239

    Google Scholar 

  45. Nikolov AD, Wasan DT, Chengara A, Koczo K, Policello GA, Kolossvary I (2002) Adv Colloid Int Sci 96:325–338

    Google Scholar 

  46. Lutgens FK, Tarbuck EJ (2000) Essentials of geology, 7th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  47. Greenwood NN, Earnshaw A (1984) Chemistry of the Elements. Pergamon Press, Oxford (Chapter 9, p 381)

  48. Prescha A, Zablocka-Slowinska K, Jojka A, Grajeta H (2012) Food Chem 135:1756–1761

    Google Scholar 

  49. Robberecht H, Van Cauwenbergh R, Van Vlaslaer V, Hermans N

    Google Scholar 

  50. Powell JJ, McNaughton SA, Jugdaohsingh R, Anderson SHC, Dear J, Khot F, Mowatt L, Gleason KL, Sykes M, Thompson RPH, Bolton-Smith C, Hodson MJ (2005) Brit J Nutr 94:804–812

    Google Scholar 

  51. Carlisle EM (1972) Science 78:619–621

    Google Scholar 

  52. Schwartz K, Miline T (1992) Nature 239:333–334

    Google Scholar 

  53. Carlisle EM (1982) Nutr Rev 40:193–198

    Google Scholar 

  54. Carlisle EM (1970) Science 167:279–280

    Google Scholar 

  55. Bissé E, Epting T, Beil A, Lindinger G, Lang H, Wieland H (2005) Anal Biochem 337:130–135

    Google Scholar 

  56. Sripanyakorn S, Jugdaohsingh R, Thompson RPH, Powell JJ (2005) Nutr Bull 30:222–230

    Google Scholar 

  57. Maehira F, Iinuma Y, Eguchi Y, Miyagi I, Teruya S (2008) J Bone Miner Metab 26:446–455

    Google Scholar 

  58. Sripanyakorn S, Jugdaohsingh R, Elliot H, Walker C, Mehta P, Shoukru S, Thompson RPH, Powell JJ (2004) Brit J Nutr 91:403–409

    Google Scholar 

  59. Lo DB, Christian GD (1978) Microchem J 23:481–487

    Google Scholar 

  60. Mauras Y, Riberi P, Cartier F, Allain P (1980) Biomedicine 33:228–230

    Google Scholar 

  61. Dobbie JW, Smith MB (1982) Scott Med J 27:17–19

    Google Scholar 

  62. Berlyne GM, Caruso C (1983) Clin Chim Acta 129:239–244

    Google Scholar 

  63. Berlyne GM, Dudek E, Adler AJ, Rubin JE, Seidman M (1985) Kidney Int 28:175–177

    Google Scholar 

  64. Tanaka T, Hayashi Y (1986) Clin Chim Acta 156:109–113

    Google Scholar 

  65. Berlyne GM, Adler AJ, Ferran N, Bennett S, Holt J (1986) Nephron 43:5–9

    Google Scholar 

  66. Gittelman HJ (1990) J Anal Atom Spectrom 5:687–689

    Google Scholar 

  67. Roberts NB, Williams P (1990) Clin Chem 36:1460–1465

    Google Scholar 

  68. Gittelman HJ, Alderman F, Perry SJ (1992) Kidney Int 42:957–959

    Google Scholar 

  69. Teuber SS, Saunders RL, Halpern GM (1995) Biol Trace Elem Res 48:121–130

    Google Scholar 

  70. Leung FY, Edmond P (1977) Clin Biochem 30:399–403

    Google Scholar 

  71. Brown H (1927) J Biol Chem 75:789–794

    Google Scholar 

  72. Jugdaohsingh R, Anderson SHC, Tucker KL, Elliott H, Kiel DP, Thompson PH, Powell JJ (2002) Am J Clin Nutr 75:887–893

    Google Scholar 

  73. Franz AK, Wilson SO (2013) J Med Chem 56:388–405

    Google Scholar 

  74. Bikzhanova GA, Toulokhonova IS, Gately S, West R (2005) Silicon Chem 3:209–217

    Google Scholar 

  75. Sieburth SM, Nittoli T, Mutahi AM, Guo L (1998) Angew Chem Int Ed 37:812–814

    Google Scholar 

  76. Troegel D, Möller F, Tacke R (2010) J Organomet Chem 695:310–313

    Google Scholar 

  77. Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS (2010) J Pharm Sci 99:2386–2398

    Google Scholar 

  78. Showell GA, Mills JS (2003) Drug Discov Today 8:551–556

    Google Scholar 

  79. Mills JS Showell GA (2004) Expert Opin Investig Drugs 13:1149–1157

    Article  CAS  Google Scholar 

  80. Gately S, West R (2007) Drug Develop Res 68:156–163

    Google Scholar 

  81. Min GK, Hernández D, Skrydstrup T (2013) Account Chem Res 46:457–470

    Google Scholar 

  82. Colussi VC, Feyes DK, Mulvihill JW, Li Y-S, Kenney ME, Elmets CA, Oleinick NL, Mukhtar H (1999) Photochem Photobiol 69:236–241

    Google Scholar 

  83. Miller JD, Baron ED, Scull H, Hsia A, Berlin JC, McCormick T, Colussi V, Kenney ME, Cooper KD, Oleinick NL (2007) Toxicol Appl Pharmacol 224:290–299

    Google Scholar 

  84. Rodriguez ME, Zhang P, Azizuddin K, Delos Santos GB, Chiu S-M, Xue L-Y, Berlin JC, Peng X, Wu H, Lam M, Nieminen A-L, Kenney ME, Oleinick NL (2009) Photochem Photobiol 85:1189–1200

    Google Scholar 

  85. Thompson PA, Berg SL, Aleksic A, Kerr JZ, McGuffey L, Dauser R, Nuchtern JG, Hausheer F, Blaney SM (2004) Cancer Chemother Pharmacol 53:527–532

    Google Scholar 

  86. Van Hattum AH, Pinedo HM, Schlüper HMM, Hausheer FH, Boven E (2000) Int J Cancer 88:260–266

    Google Scholar 

  87. Warneck JB, Cheng FHM, Barnes MJ, Mills JS, Montana JG, Naylor RJ, Ngan M-P, Wai M-K, Daiss JO, Tacke R, Rudd JA (2008) Toxicol Appl Pharm 232:369–375

    Google Scholar 

  88. Johansson T, Widolf L, Popp F, Tacke R, Jurva U (2010) Drug Metab Dispos 38:73–83

    Google Scholar 

  89. Barnes MJ, Burschka C, Büttner M, Conroy R, Daiss JO, Gray IC, Hendrick AG, Tam LH, Kuehn D, Miller DJ, Mills JS, Mitchell P, Montana JG, Muniandy PA, Rapely H, Showell GA, Tebbe D, Tacke R, Warneck JBH, Zhu B (2011) Chem Med Chem 6:2070–2080

    Google Scholar 

  90. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR (1999) Proc Natl Acad Sci U S A 96:7563–7568

    Google Scholar 

  91. Subramanyam B, Woolf T, Catagnoli N Jr (1991) Chem Res Toxicol 4:123–128

    Article  CAS  Google Scholar 

  92. Dauer W, Przedborski S (2003) Neuron 39:889–909

    Google Scholar 

  93. Betz SF, Zhu Y-F, Chen C, Struthers RS (2008) J Med Chem 51:3331–3348

    Google Scholar 

  94. Bains W, Tacke R (2003) Curr Opin Drug Discov Dev 6:526–543

    Google Scholar 

  95. Tanizawa A, Kohn KW, Kohlhagen G, Leteurtre F, Pommier Y (1995) Biochemistry 34:7200–7206

    Google Scholar 

  96. Tacke R, Heinrich R, Kornek T, Merget M, Wagner SA, Gross J, Keim C, Lambrecht G, Mutschler E, Beckers T, Bernd M, Reissmann T (1999) Phosphorus, Sulfur, Silicon 150-151:69–87

    Google Scholar 

  97. Aguadisch L, Colas A (1997) Chim Nouv 15:1779–1788

    Google Scholar 

  98. Sam AP (1992) J Control Release 22:35–46

    Google Scholar 

  99. Schmidt G, Andersson S-B, Nordle Ö, Johansson C-J, Gunnarsson PO (1994) Gynecol Obstet Invest 38:253–260

    Google Scholar 

  100. Paradiso P, Galante R, Santos L, Alves Matos AP, Calaço R, Serro AP, Saramago B (2014) J Biomed Mater Res Part B: Appl Biomater 102B:1170–1180

    Google Scholar 

  101. Chiappini C, Tasciotti E, Serda RE, Brousseau L, Liu X, Ferrari M (2011) Phys Status Solidi C 8:1826–1832

    Google Scholar 

  102. Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Adv Drug Deliv Rev 60:1266–1277

    Google Scholar 

  103. Vaccari L, Canton D, Zaffaroni N, Villa R, Tomen M, di Fabrizio E (2006) Microelectron Eng 83:1598–1601

    Google Scholar 

  104. Li X, Coffer JL, Chen Y, Pinizotto RF, Newey J, Canham LT (1998) J Am Chem Soc 120:11706–11709

    Google Scholar 

  105. Low SP, Williams KA, Canham LT, Voelcker NH (2006) Biomaterials 27:4538–4546

    Google Scholar 

  106. Low SP, Voelcker NH, Canham LT, Williams KA (2009) Biomaterials 30:2873–2880

    Google Scholar 

  107. Porter AE (2006) Micron 37:681–688

    Google Scholar 

  108. Gencer ZA, Odabas S, Sasmazel HT, Piskin E (2012) J Bioactive Compat Polym 27:419–428

    Google Scholar 

  109. Colas A, Curtis J (2004) Silicone biomaterials: history and chemistry. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. p 80–86

    Google Scholar 

  110. Yoda R (1998) J Biomater Res Polym Edn 9:561–626

    Google Scholar 

  111. Kannan RY, Salacinski HJ, Ghanavi J, Narula A, Odlyha M, Peirovi H, Butler PE, Seifalian AM (2007) Plast Reconstr Surg 119:1653–1662

    Google Scholar 

  112. Lane TH, Burns SA (1996) Curr Topics Microbiol Immunol 210:3–12

    Google Scholar 

  113. Lee GM (1995) Med Device Technol 6:20–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Zelisko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zelisko, P. (2014). Silicon in a Biological Environment. In: Zelisko, P. (eds) Bio-Inspired Silicon-Based Materials. Advances in Silicon Science, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9439-8_1

Download citation

Publish with us

Policies and ethics