Skip to main content

ABA Conjugates and Their Physiological Roles in Plant Cells

  • Chapter
  • First Online:

Abstract

The phytohormone abscisic acid (ABA) is involved in many important physiological processes such as stomatal closure, seed dormancy, plant growth and development, and responses to various environmental stresses. Along with ABA, various conjugated forms of ABA, which are inactive in ABA-related physiology, have been identified in plant cells. One of the most abundant forms of ABA conjugates is an ABA-glucosyl ester named as ABA-GE. The conjugate forms have long been thought to be by-products that are generated by one of the catabolic processes involved in lowering cellular ABA levels. However, recent studies provide evidence for the role of ABA-GE as a reservoir for the rapid production of active ABA in a compartmentalized fashion. ABA-GE can be converted to active ABA through a one-step hydrolysis by two β-glucosidases: AtBG1 and AtBG2, that localize to the ER and vacuole, respectively. Moreover, ABA produced from ABA-GE by these enzymes is crucial for proper adaptation to abiotic stresses. Thus, ABA-GE plays a crucial role in ABA-related plant physiology, which is exerted through the hydrolysis by β-glucosidases. In addition, the physiological role of ABA-GE is critically dependent on additional activities including de novo biosynthesis of ABA, conjugation of ABA with glucose by ABA UDP-glucosyltransferases, compartmentalization into subcellular organelles and long-distance transportation between tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baier M, Gimmler H, Hartung W. Permeability of the guard cell plasma-membrane and tonoplast. J Exp Bot. 1990;41:351–8.

    Article  CAS  Google Scholar 

  • Bray EA. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ. 2002;25:153–61.

    Article  PubMed  CAS  Google Scholar 

  • Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol. 2013;163:1446–58.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 2002;14:2723–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W. Extracellular b-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot. 2000;51:937–44.

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 2008;147:1984–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriquez PL. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell. 2002;14:1833–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harris MJ, Dugger WM. The occurrence of abscisic acid and abscisyl-beta-d-glucopyranoside in developing and mature citrus fruit as determined by enzyme immunoassay. Plant Physiol. 1986;82:339–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hartung W, Sauter A, Hose E. Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot. 2002;53:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Jiang F, Hartung W. Long-distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot. 2008;59:937–44.

    Google Scholar 

  • Johnson JD, Ferrell WK. The relationship of abscisic acid metabolism to stomatal conductance in Douglas fir during water stress. Plant Physiol. 1982;55:431–7.

    Article  CAS  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 2006;126:1109–20.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann H, Vlasov P. Plant growth and stress: the enzymic hydrolysis of an abscisic acid conjugate. J Plant Physiol. 1988;132:98–101.

    Article  CAS  Google Scholar 

  • Lim EK, Doucet CJ, Hou B, Jackson RG, Abrams SR, Bowles DJ. Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Asymmetry. 2005;16:143–7.

    Article  CAS  Google Scholar 

  • Lorenc-Kukuła K, Korobczak A, Aksamit-Stachurska A, Kostyń K, Lukaszewicz M, Szopa J. Glucosyltransferase: the gene arrangement and enzyme function. Cell Mol Biol Lett. 2004;9:935–46.

    PubMed  Google Scholar 

  • Milborrow BV. The stability of conjugated abscisic acid during wilting. J Exp Bot. 1978;29:1059–66.

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85.

    Article  PubMed  CAS  Google Scholar 

  • Neil SJ, Horgan R, Heald JK. Determination of the levels of abscisic acid-glucose ester in plants. Planta. 1983;157:371–5.

    Article  Google Scholar 

  • Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry. 2011;72:2097–112.

    Article  PubMed  CAS  Google Scholar 

  • Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams S, Bowles DJ. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J. 2006;46:492–502.

    Article  PubMed  CAS  Google Scholar 

  • Ross ARS, Ambrose SJ, Cutler AJ, Feurtado JA, Kermode AR, Nelson K, Zhou R, Abrams SR. Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem. 2004;329:324–33.

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004;134:1439–49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sauter A, Abrams SR, Hartung W. Structural requirements of abscisic acid (ABA) and its impact on water flow during radial transport of ABA analogues through maize roots. J Plant Growth Regul. 2002;21:50–9.

    Article  PubMed  CAS  Google Scholar 

  • Sauter A, Hartung W. The contribution of internode and mesocotyl tissues to root-to-shoot signaling of abscisic acid. J Exp Bot. 2002;53:297–302.

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004;45:1694–703.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol. 2000;3:217–23.

    Article  PubMed  CAS  Google Scholar 

  • Sidler M, Hassa P, Hasan S, Ringli C, Dudler P. Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell. 1998;10:1623–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thomashow MF. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:571–99.

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Zhu JK. New developments in abscisic acid perception and metabolism. Curr. Opion. Plant. Biol. 2007;10:447–52.

    Article  CAS  Google Scholar 

  • Vilaró F, Canela-Xandri A, Canela R. Quantification of abscisic acid in grapevine leaf (Vitisvinifera) by isotope-dilution liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2006;386:306–12.

    Article  PubMed  Google Scholar 

  • Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant Cell Environ. 2014;37(4):1022–36. doi:10.1111/pce.12218 [Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003;133:29–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun DJ, Hwang I. A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell. 2012;24:2184–99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu ZY, Kim DH, Hwang I. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Rep. 2013;32:807–13.

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011;66:182–93.

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD. Metabolism of abscisic acid and its regulation in Xanthium leaves during and after water stress. Plant Physiol. 1983;71:477–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Biol. 1998;39:439–73.

    Article  Google Scholar 

  • Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol. 2001;4:401–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhwan Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, ZY., Yoo, YJ., Hwang, I. (2014). ABA Conjugates and Their Physiological Roles in Plant Cells. In: Zhang, DP. (eds) Abscisic Acid: Metabolism, Transport and Signaling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9424-4_5

Download citation

Publish with us

Policies and ethics