Skip to main content

ABA Regulation of Plant Response to Biotic Stresses

  • Chapter
  • First Online:

Abstract

Plants live in complicated environments in which they are obliged to defend against a broad range of attackers. In order to protect themselves, plants have evolved complex regulatory signaling networks where multiple hormonal pathways antagonistically or synergistically interact and influence plant defense responses. Beside of its prominent roles in abiotic stress tolerance, the plant hormone abscisic acid (ABA) has also been emerged as crucial regulator in biotic stresses. Accumulated studies have shown that ABA can exert both positive and negative influence on host defense, and its efficacy is dependent on the specific plant–attacker combination. In this chapter, we mainly focused on recent literature dealing with the roles of ABA in modulating plant defense responses against various attackers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achuo EA, Prinsen E, Hofte M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol. 2006;55:178–86.

    CAS  Google Scholar 

  • Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell. 2007;19:1665–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alazem M, Lin KY, Lin NS. The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol Plant Microbe Interact. 2014;27:177–89.

    PubMed  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell. 2004;16:3460–79.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007;144:1863–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Asselbergh B, Achuo EA, Höfte M, Van Gijsegem F. Abscisic acid-deficiency leads to rapid activation of tomato defense responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol. 2008;9:11–24.

    PubMed  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 2002;128:491–501.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ballaré CL. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci. 2011;16:249–57.

    PubMed  Google Scholar 

  • Blanco-Ulate B, Vincenti E, Powell AL, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front Plant Sci. 2013;4:142.

    PubMed  PubMed Central  Google Scholar 

  • Bodenhausen N, Reymond P. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant–Microbe Interact. 2007;20:1406–20.

    PubMed  CAS  Google Scholar 

  • Burgyán J, Havelda Z. Viral suppressors of RNA silencing. Trends Plant Sci. 2011;16:265–72.

    PubMed  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D. The roles of ABA in plant–pathogen interactions. J Plant Res. 2011;124:489–99.

    PubMed  CAS  Google Scholar 

  • Chan Z. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics. 2012;100:110–5.

    PubMed  CAS  Google Scholar 

  • Chen WJ, Zhu T. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci. 2004;9:591–6.

    PubMed  CAS  Google Scholar 

  • Chen LT, Wu K. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav. 2010;5:1318–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y, Chu C, Guo H, Xie Q. Up-regulation of LSB1/GDU3 impacts geminivirus infection by activating the salicylic acid pathway. Plant J. 2010;62:12–23.

    PubMed  CAS  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta. 2012;1819:120–8.

    PubMed  CAS  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA. 2013;110:E1963–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 2006;124:803–14.

    PubMed  CAS  Google Scholar 

  • Cui X, Fan B, Scholz J, Chen Z. Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development. Plant Cell. 2007;19:1388–402.

    PubMed  PubMed Central  CAS  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforguel G, Mansfield JW, Egea PR, Bogre L, Grant M. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease. EMBO J. 2007;26:1434–43.

    PubMed  PubMed Central  Google Scholar 

  • de Torres-Zabala M, Bennett MH, Truman W, Grant M. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J. 2009;59:375–86.

    PubMed  Google Scholar 

  • Ding SW. RNA-based antiviral immunity. Nat Rev Immunol. 2010;10:632–44.

    PubMed  CAS  Google Scholar 

  • Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell. 2007;130:413–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dinh ST, Baldwin IT, Galis I. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. Plant Physiol. 2013;162:2106–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185–209.

    PubMed  CAS  Google Scholar 

  • Elad Y. The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiorum) in various crops. Plant Pathol. 1992;41:417–26.

    CAS  Google Scholar 

  • Erb M, Flors V, Karlen D, de Lange E, Planchamp C, D’Alessandro M, Turlings TC, Ton J. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 2009;59:292–302.

    PubMed  CAS  Google Scholar 

  • Erb M, Köllner TG, Degenhardt J, Zwahlen C, Hibbard BE, Turlings TC. The role of abscisic acid and water stress in root herbivore-induced leaf resistance. New Phytol. 2011;189:308–20.

    PubMed  CAS  Google Scholar 

  • Erb M, Meldau S, Howe GA. Role of phytohormones in insect–specific plant reactions. Trends Plant Sci. 2012;17:250–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Escalante-Pérez M, Krol E, Stange A, Geiger D, Al-Rasheid KA, Hause B, Neher E, Hedrich R. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proc Natl Acad Sci USA. 2011;108:15492–7.

    PubMed  PubMed Central  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C. Abscisic acid has a key role in modulating diverse plant–pathogen interactions. Plant Physiol. 2009;150:1750–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Faulkner C, Robatzek S. Plants and pathogens : putting infection strategies and defense mechanisms on the map. Curr Opin Plant Biol. 2012;15:699–707.

    PubMed  CAS  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 2011;23:701–15.

    PubMed  PubMed Central  Google Scholar 

  • Flors V, Ton J, Jakab G, Mauch-Mani B. Abscisic acid and callose: team players in defence against pathogens? J Phytopathol. 2001;153:377–83.

    Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK. In vitro reconstitution of an abscisic acid signalling pathway. Nature. 2009;462:660–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinogaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9:436–42.

    PubMed  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell. 2000;12:1117–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2004;43:205–27.

    Google Scholar 

  • Goritschnig S, Weihmann T, Zhang Y, Fobert P, McCourt P, Li X. A novel role for protein farnesylation in plant innate immunity. Plant Physiol. 2008;148:348–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J. Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proc Natl Acad Sci USA. 2008;105:18631–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grant MR, Jones JDG. Hormone (dis)harmony moulds plant health and disease. Science. 2009;324:750–2.

    PubMed  CAS  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA. Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol. 2009;149:1017–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guimaraes RL, Stotz HU. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol. 2004;136:3703–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez C. DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 2000;19:792–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell. 1996;8:793–803.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hills GJ, Plaskitt KA, Young ND, Dunigan DD, Watts JW, Wilson TM, Zaitlin M. Immunogold localization of the intracellular sites of structural and nonstructural tobacco mosaic virus proteins. Virology. 1987;161:488–96.

    PubMed  CAS  Google Scholar 

  • Hsu FC, Chou MY, Chou SJ, Li YR, Peng HP, Shih MC. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant Cell. 2013;25:2699–713.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Iriti M, Faoro F. Abscisic aicd is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol Bioch. 2008;46:1106–11.

    CAS  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF. Transcriptional regulation by an NAC (NAM–ATAF1,2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f.sp. hordei in Arabidopsis. Plant J. 2008;56:867–80.

    PubMed  CAS  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuki H. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice–Magnaporthe grisea interaction. Mol Plant Microbe Interact. 2010;23:791–8.

    PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9.

    PubMed  CAS  Google Scholar 

  • Katagiri F, Tsuda K. Understanding the plant immune system. Mol Plant Microbe Interact. 2010;23:1531–6.

    PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM. MYC2: the master in action. Mol Plant. 2013;6:686–703.

    PubMed  CAS  Google Scholar 

  • Kerchev P, Karpinska B, Morris J, Hussain A, Verrall S, Hedley P, Fenton B, Foyer CH, Hancock R. Vitamin C and the abscisic acid-insensitive 4 (ABI4) transcription factor are important determinants of aphid resistance in Arabidopsis. Antioxid Redox Signal. 2013;18:2091–105.

    PubMed  CAS  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell. 2008;20:2357–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Knight H, Knight MR. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 2001;6:262–7.

    PubMed  CAS  Google Scholar 

  • Koga H, Dohi K, Mori M. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Path. 2004;65:3–9.

    CAS  Google Scholar 

  • Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 2012;72:694–706.

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 2002;5:325–31.

    PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI. NADPH oxidase AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis. EMBO J. 2003;22:2623–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, Liang L, Xia R, Wu Y, Guo H, Xie Q. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 2008;57:905–17.

    PubMed  Google Scholar 

  • López-Pérez L, Martínez-Ballesta Mdel C, Maurel C, Carvajal M. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry. 2009;70:492–500.

    PubMed  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell. 2004;16:1938–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenzo O, Solano R. Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol. 2005;8:532–40.

    PubMed  CAS  Google Scholar 

  • Lozano-Durán R, Bourdais G, He SY, Robatzek S. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol. 2013;202:259.

    Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064–8.

    PubMed  CAS  Google Scholar 

  • Macho AP, Boutrot F, Rathjen JP, Zipfel C. ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. Plant Physiol. 2012;159:1845–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F. The role of abscisic acid and plant–pathogen interactions. Curr Opin Plant Biol. 2005;8:409–14.

    PubMed  CAS  Google Scholar 

  • Mayek-Perez N, Garcia-Espinosa R, Lopez-Castaneda C, Acosta-Gallegos J, Simpson J. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol Mol Plant Path. 2002;60:185–95.

    Google Scholar 

  • Mazumder M, Das S, Saha U, Chatterjee M, Bannerjee K, Basu D. Salicylic acid-mediated establishment of the compatibility between Alternaria brassicicola and Brassica juncea is mitigated by abscisic acid in Sinapis alba. Plant Physiol Biochem. 2013;70:43–51.

    PubMed  CAS  Google Scholar 

  • McElrone AJ, Sherald JL, Forseth IN. Effects of water stress on symptomatology and growth of Parthenocissus quinquefolia by Xylella fastiosa. Plant Dis. 2001;85:1160–4.

    Google Scholar 

  • Mehdy MC. Active oxygen species in plant defense against pathogens. Plant Physiol. 1994;105:467–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY. Plant stomata function in innate immunity against bacterial invasion. Cell. 2006;126:969–80.

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol. 2008;46:101–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mendgen K, Hahn M, Deising H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol. 1996;34:367–86.

    PubMed  CAS  Google Scholar 

  • Mersmann S, Bourdais G, Rietz S, Robatzek S. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol. 2010;154:391–400.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci. 2014;23(5):4.

    Google Scholar 

  • Moeder W, Yoshioka K. Environmental sensitivity in pathogen resistant Arabidopsis mutants. In: Yoshioka K, Shinozaki K, editors. Signal crosstalk in plant stress responses. Iowa: Wiley; 2009. p. 113–35.

    Google Scholar 

  • Moeder W, Ung H, Mosher S, Yoshioka K. SA-ABA antagonism in defense responses. Plant Signal Behav. 2010;5:1231–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mohr PG, Cahill DM. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. Tomato and Peronospora parasitica. Func Plant Biol. 2003;30:461–9.

    CAS  Google Scholar 

  • Mohr PG, Cahill DM. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv Tomato. Funct Integr Genom. 2007;7:181–91.

    CAS  Google Scholar 

  • Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo SH, Urquhart W, Klessig DF, Kim SK, Nambara E, Yoshioka K. The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic aciddependent manner. Plant Physiol. 2010;152:1901–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nishimura MT, Dangl JL. Arabidopsis and the plant immune system. Plant J. 2010;61:1053–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Niu Y, Figueroa P, Browse J. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot. 2011;62:2143–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Métraux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell. 1998;10:2103–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521.

    PubMed  CAS  Google Scholar 

  • Pré M, Atallah M, Champion A, DeVos M, Pieterse CMJ, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008;147:1347–57.

    PubMed  PubMed Central  Google Scholar 

  • Rezzonico E, Flury N, Meins F, Beffa R. Transcriptional down-regulation by abscisic acid of pathogenesis-related beta-1,3-glucanase genes in tobacco cell cultures. Plant Physiol. 1998;117:585–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD. Pathological hormone imbalances. Curr Opin Plant Biol. 2007;10:372–9.

    PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant MR, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011;49:26.21–26.27.

    Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010;15:247–58.

    PubMed  CAS  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 80-hydroxylase in rice. Plant Cell Physiol. 2007;48:287–98.

    PubMed  CAS  Google Scholar 

  • Sánchez-Vallet A, López G, Ramos B, Delgado-Cerezo M, Riviere M, Llorente F, Fernández PV, Miedes E, Estevez JM, Grant M, Molina A. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol. 2012;160:2109–24.

    PubMed  PubMed Central  Google Scholar 

  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol. 2011;156:1520–34.

    PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature. 2001;410:317–30.

    Google Scholar 

  • Schulze-Lefert P, Robatzek S. Plant pathogen strick guard cells into opening the gates. Cell. 2006;126:831–4.

    PubMed  CAS  Google Scholar 

  • Seifi HS, Curvers K, De Vleesschauwer D, Delaere I, Aziz A, Höfte M. Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol. 2013;199:490–504.

    PubMed  CAS  Google Scholar 

  • Seo PJ, Park CM. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol. 2010;186:471–83.

    PubMed  CAS  Google Scholar 

  • Seo YS, Gepts P, Gilbertson RL. Genetics of resistance to the geminivirus, bean dwarf mosaic virus, and the role of the hypersensitive response in common bean. Theor Appl Genet. 2004;108:786–93.

    PubMed  Google Scholar 

  • Thaler JS, Bostock RM. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology. 2004;85:48–58.

    Google Scholar 

  • Ton J, Mauch-Mani B. Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 2004;38:119–30.

    PubMed  CAS  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Metraux JP, Mauch-Mani B. Dissecting the b-aminobutyric acid induced priming phenomenon in Arabidopsis. Plant Cell. 2005;17:987–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 2009;14:310–7.

    PubMed  CAS  Google Scholar 

  • Tooker JF, De Moraes CM. Feeding by a gall-inducing caterpillar species alters levels of indole-3-acetic and abscisic acid in Solidago altissima (Asteraceae) stems. Arthropod Plant Interact. 2011;5:115–24.

    Google Scholar 

  • Truman W, de Zabala MT, Grant M. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J. 2006;46:14–33.

    PubMed  CAS  Google Scholar 

  • Turner NC, Graniti A. Fusicoccin: a fungal toxin that opens stomata. Nature. 1969;223:1070–1.

    CAS  Google Scholar 

  • Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CM, Ton J. Priming of plant innate immunity by rhizobacteria and β-amino butyric acid: differences and similarities in regulation. New Phytol. 2009;183:419–31.

    PubMed  Google Scholar 

  • van Kan JA. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 2006;11:247–53.

    PubMed  Google Scholar 

  • Verhage A, van Wees SC, Pieterse CM. Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol. 2010;154:536–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206.

    PubMed  CAS  Google Scholar 

  • Vos IA, Verhage A, Schuurink RC, Watt LG, Pieterse CM, Van Wees SC. On set of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Front Plant Sci. 2013;4:539.

    PubMed  PubMed Central  Google Scholar 

  • Wang SM, Hou XL, Ying L, Cao XW, Zhang S, Wang F. Effects of turnip mosaic virus (TuMV) on endogenous hormones and transcriptional level of related genes in infected non-heading Chinese cabbage. J Nanjing Agric Univ. 2011;5:13–9.

    Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski PC. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA. 1994;91:1433–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Whenham RJ, Fraser RSS, Brown LP, Payne JA. Tobacco mosaic virus-induced increase in abscisic acid concentration in tobacco leaves: intracellular location in light and dark green areas, and relationship to symptom development. Planta. 1986;168:592–8.

    PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989;246:377–9.

    PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell. 2002;14(suppl.):S165–S183.

    Google Scholar 

  • Xiong LZ, Yang YN. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell. 2003;15:745–59.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Audenaert K, Hofte M, De Vleesschauwer D. Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PLoS ONE. 2013;27:e67413.

    Google Scholar 

  • Yang Y. Towards understanding of signal perception and transduction in rice blast resistance. The 4th International Rice Blast Conference, Changsha, China;2007.

    Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress responses in Arabidopsis. Plant Cell. 2008;20:1678–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng W, He SY. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiol. 2010;3:1188–98.

    Google Scholar 

  • Zeng W, Melotto M, He SY. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Bio technol. 2010;21:599–603.

    CAS  Google Scholar 

  • Zhang H, Zhu X, Liu H. Effect of banana bunchy top virus (BBTV) on endogenous hormone of banana plant. Acta Phytopathol Sin. 1997;27:79–83.

    Google Scholar 

  • Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 2006;20:3255–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell. 2011;23:273–88.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory was supported by the Natural Science Foundation of China (31200915), the West Light Foundation of CAS, and Yong Innovation Promotion Association of the Chinese Academy of Sciences. We apologize to the colleagues whose work could not be cited here because of space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diqiu Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, L., Yu, D. (2014). ABA Regulation of Plant Response to Biotic Stresses. In: Zhang, DP. (eds) Abscisic Acid: Metabolism, Transport and Signaling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9424-4_20

Download citation

Publish with us

Policies and ethics