Skip to main content

ABA and the Floral Transition

  • Chapter
  • First Online:
Abscisic Acid: Metabolism, Transport and Signaling

Abstract

Plants use endogenous and environmental cues to trigger flowering. While variations in day length and temperature play a major role in controlling the transition to flowering, little is known about water stress-derived signals. Drought conditions cause early flowering in various plant species. Since it is well recognized that drought conditions also stimulate abscisic acid (ABA) accumulation, ABA signalling might underpin the observed early flowering response. Experiments have shown that exogenous applications of ABA cause flowering time alterations, suggesting that ABA might be an endogenous component affecting the floral transition. Confirming a role for endogenous ABA in flowering, mutants impaired in ABA production display flowering alterations, although a consensus as to the precise mode of action of ABA in plants is lacking. ABA activates flowering in several plant species and in Arabidopsis it promotes activation of the key floral gene FLOWERING LOCUS T. However, how ABA signalling is integrated in the floral network remains poorly understood. The evidence reviewed here suggests that ABA activates a complex network of signalling components including transcription factors with contrasting effects in flowering. Lesions in these ABA-Photoperiod interaction signalling genes produce alterations in flowering but their regulation and site of action have been so far elusive. ABA is mainly known as a stress hormone and its role in flowering is only beginning to emerge. In this chapter we will review the evidence for and against ABA controlling the floral transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 2005;309(5737):1052–6.

    PubMed  CAS  Google Scholar 

  • Achard P, et al. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Nat Acad Sci USA. 2007;104(15):6484–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • An H, et al. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development. 2004;131(15):3615–26.

    PubMed  CAS  Google Scholar 

  • Balasubramanian S, et al. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2006;2(7):e106.

    PubMed  PubMed Central  Google Scholar 

  • Barrero JM, et al. A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Arabidopsis thaliana. 2005;56(418):2071–83.

    CAS  Google Scholar 

  • Bernier G. Physiological signals that induce flowering. Plant Cell. 1993;5(10):1147–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bezerra IC, et al. Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis. Plant J Cell Mol Biol. 2004;40(1):112–9.

    CAS  Google Scholar 

  • Blanvillain R, et al. Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. EMBO J. 2011;30(18):3812–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blazquez M, et al. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell. 1998;10(5):791–800.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blázquez MA, et al. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet. 2003;33(2):168–71.

    PubMed  Google Scholar 

  • Boccalandro HE, et al. Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol. 2012;158(3):1475–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brocard IM, et al. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol. 2002;129(4):1533–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Burbidge A, et al. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J. 1999;17(4):427–31.

    PubMed  CAS  Google Scholar 

  • Busk PK, Pagès M. Regulation of abscisic acid-induced transcription-Springer. Plant Mol Biol. 1998;37(3):425–35.

    PubMed  CAS  Google Scholar 

  • Carvalho RF, et al. Convergence of developmental mutants into a single tomato model system: “Micro-Tom” as an effective toolkit for plant development research. Plant Methods. 2011;7(1):18.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chandler J, et al. Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca-1. Planta. 2000;210(4):677–82.

    PubMed  CAS  Google Scholar 

  • Cheng W-H, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 2002;14(11):2723–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Choi H, et al. ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 2000;275(3):1723–30.

    PubMed  CAS  Google Scholar 

  • Corbesier L, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007;316(5827):1030–3.

    PubMed  CAS  Google Scholar 

  • Covington MF, et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008;9(8):R130.

    PubMed  PubMed Central  Google Scholar 

  • Cutler SR, et al. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.

    PubMed  CAS  Google Scholar 

  • D’Aloia M, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011;65(6):972–9.

    PubMed  Google Scholar 

  • Dai M, et al. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in arabidopsis. Plant Cell. 2013;25(2):517–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Domagalska MA, et al. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development. 2007;134(15):2841–50.

    PubMed  CAS  Google Scholar 

  • Domagalska MA et al. (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. Plos One 5(11): p.e14012.

    Google Scholar 

  • El-Antably HMM, Waering PF. Stimulation of flowering in certain short-day Plants by Abscisin. Nature. 1966;210(5033):328–9.

    CAS  Google Scholar 

  • Endo A, et al. Drought induction of arabidopsis 9-cis-Epoxycarotenoid Dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 2008;147(4):1984–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002; 14:S15–S45.

    Google Scholar 

  • Fornara F, et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell. 2009;17(1):75–86.

    PubMed  CAS  Google Scholar 

  • Franks SJ. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol. 2011;190(1):249–57.

    PubMed  Google Scholar 

  • Franks SJ, et al. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Nat Acad Sci USA. 2007;104(4):1278–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fujii H, et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature. 2009;462(7273):660–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fujii H, et al. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell. 2007;19(2):485–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita Y, et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. 2011;124(4):509–25.

    PubMed  CAS  Google Scholar 

  • Fujita Y, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell. 2005;17(12):3470–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Furihata T, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Nat Acad Sci USA. 2006;103(6):1988–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Galvão VC, et al. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development. 2012;139(21):4072–82.

    PubMed  Google Scholar 

  • Gazzarrini S, McCourt P. Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann Bot. 2003;91(6):605–12.

    PubMed  CAS  Google Scholar 

  • Giraudat J, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992;4(10):1251–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Han S-K, et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell. 2012;24(12):4892–906.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Han Y, et al. The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of arabidopsis thaliana. PLoS One. 2013;8(11):e73541.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hao Q, et al. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell. 2011;42(5):662–72.

    PubMed  Google Scholar 

  • He Y, et al. Nitric oxide represses the Arabidopsis floral transition. Science. 2004;305(5692):1968–71.

    PubMed  CAS  Google Scholar 

  • Herde O, et al. Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol. 1999;119(1):213–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hisamatsu T, King RW. The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot. 2008;59(14):3821–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hoth S, et al. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci. 2002;115(24):4891–900.

    PubMed  CAS  Google Scholar 

  • Huala E, Sussex IM. Determination and cell interactions in reproductive meristems. Plant Cell. 1993;5(10):1157–65.

    PubMed  PubMed Central  Google Scholar 

  • Hubbard KE, et al. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 2010;24(16):1695–708.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Imaizumi T. Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol. 2010;13(1):83–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Imaizumi T, et al. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science. 2005;309(5732):293–7.

    PubMed  CAS  Google Scholar 

  • Ito S, et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Nat Acad Sci USA. 2012;109(9):3582–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ivey CT, Carr DE. Tests for the joint evolution of mating system and drought escape in Mimulus. Ann Bot. 2012;109(7):1381.

    Google Scholar 

  • Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Current Biol CB. 2007;17(12):1050–4.

    CAS  Google Scholar 

  • Jaeger KE, et al. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell. 2013;25:820–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jammes F, et al. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Nat Acad Sci USA. 2009;106(48):20520–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J-Y, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell. 2002;14(2):343–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kardailsky I, et al. Activation tagging of the floral inducer FT. Science. 1999;286(5446):1962–5.

    PubMed  CAS  Google Scholar 

  • Kim DH, et al. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in arabidopsis. Plant Cell. 2002;14(12):3043–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  • King RW, Evans LT. Inhibition of flowering in Lolium temulentum L. By water stress: a role for Abscisic acid. Aust J Plant Physiol. 1977;4(2):225–33.

    CAS  Google Scholar 

  • Kobayashi Y, et al. A pair of related genes with antagonistic roles in mediating flowering signals. Science. 1999;286(5446):1960–2.

    PubMed  CAS  Google Scholar 

  • Koiwa H, et al. C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Nat Acad Sci USA. 2002;99(16):10893–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Koiwai H, et al. Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol. 2004;134(4):1697–707.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Koops P, et al. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot. 2011;62(15):5547–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhn JM, et al. mRNA metabolism of flowering-time regulators in wild-type Arabidopsis revealed by a nuclear cap binding protein mutant, abh1. Plant J. 2007;50(6):1049–62.

    PubMed  CAS  Google Scholar 

  • Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140(1):136–47.

    PubMed  CAS  Google Scholar 

  • Kumar SV, et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484(7393):242–5.

    PubMed  CAS  Google Scholar 

  • Kumimoto RW, et al. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J. 2010;63:379–91.

    PubMed  CAS  Google Scholar 

  • Kumimoto RW, et al. NUCLEAR FACTOR Y transcription factors have both opposing and additive roles in ABA-mediated seed germination. PLoS One. 2013;8(3):e59481.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kurup S, et al. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J. 2001;21(2):143–55.

    Google Scholar 

  • Lafitte HR, et al. Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Field Crops Res. 2006;97(1):77–86.

    Google Scholar 

  • Lee KH, et al. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 2006;126(6):1109–20.

    PubMed  CAS  Google Scholar 

  • Legnaioli T, et al. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J. 2009;28(23):3745–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  • LeNoble ME, et al. Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. J Exp Bot. 2004;55(395):237–45.

    PubMed  CAS  Google Scholar 

  • Li Y, et al. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine. Genome Res. 2006;16(3):414–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lim M-H, et al. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell. 2004;16(3):731–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science. 2008;322(5907):1535–9.

    PubMed  CAS  Google Scholar 

  • Lopez-Molina L, et al. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J Cell Mol Biol. 2002;32(3):317–28.

    CAS  Google Scholar 

  • Lopez-Molina L, et al. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Nat Acad Sci USA. 2001;98(8):4782–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell. 2000;12(12):2351–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lu C, et al. Mitogen-activated protein kinase signaling in post germination arrest of development by abscisic acid. Proc Nat Acad Sci USA. 2002;99(24):15812–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324(5930):1064–8.

    PubMed  CAS  Google Scholar 

  • Macknight R, et al. FCA, a gene controlling flowering time in arabidopsis, encodes a protein containing RNA-binding domains. Cell. 1997;89(5):737–45.

    PubMed  CAS  Google Scholar 

  • Martínez C, et al. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J. 2004;37(2):209–17.

    PubMed  Google Scholar 

  • Martínez-Zapater JM, et al. The transition to flowering in arabidopsis. Cold Spring Harbor Monogr Arch. 1994;27:403–33.

    Google Scholar 

  • Mathieu J, et al. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biol CB. 2007;17(12):1055–60.

    CAS  Google Scholar 

  • Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999;11(5):949–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mori IC, et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+)-permeable channels and stomatal closure. PLoS Biol. 2006;4(10):e327.

    PubMed  PubMed Central  Google Scholar 

  • Mönke G, et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 2012;40(17):8240–54.

    PubMed  PubMed Central  Google Scholar 

  • Nakamura S, et al. Physical interactions between ABA response loci of Arabidopsis. Plant J Cell Mol Biol. 2001;26(6):627–35.

    CAS  Google Scholar 

  • Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56(1):165–85.

    PubMed  CAS  Google Scholar 

  • Notaguchi M et al. Long-distance, graft-transmissible action of arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 2008; 49(11):1645–1658.

    Google Scholar 

  • Parcy F, et al. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell. 1994;6(11):1567–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park S-Y, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324(5930):1068–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Popescu SC, et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 2009;23(1):80–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Porri A et al. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development. 2012;139(12):2198–9.

    Google Scholar 

  • Putterill J, et al. The constans gene of arabidopsis promotes flowering and encodes a protein showing similarities to Zinc-Finger transcription factors. Cell. 1995;80(6):847–57.

    PubMed  CAS  Google Scholar 

  • Reeves P, Coupland G. Analysis of flowering time control in arabidopsis by comparison of double and triple mutants. Plant Physiol. 2001;126(3):1085–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Riboni M, et al. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Plant Physiol. 2013;162(3):1706–19.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rohde A, et al. PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell. 2002;14(8):1885–901.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rohde A, et al. ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. Plant Cell. 2000a;12(1):35–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rohde A, et al. ABI3 emerges from the seed. Trends Plant Sci. 2000b;5(10):418–9.

    PubMed  CAS  Google Scholar 

  • Rohde A, Van Montagu M, Boerjan W. The ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis. Plant Cell Environ. 1999;22(3):261–70.

    CAS  Google Scholar 

  • Saez A, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell. 2008;20(11):2972–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sagi M, et al. Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol. 1999;120(2):571–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saijo Y, et al. Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol Cell. 2008;31(4):607–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Santner A, et al. Recent advances and emerging trends in plant hormone signalling. Nature. 2009;459(7250):1071.

    PubMed  CAS  Google Scholar 

  • Sawa M, et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in arabidopsis. Science. 2007;318(5848):261–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schomburg F, et al. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell. 2001;13(6):1427–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schultz E, Haughn G. Genetic-analysis of the floral initiation process (Flip) in arabidopsis. Development. (1993);119(3):745–5.

    Google Scholar 

  • Seo E, et al. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell. 2009;21(10):3185–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002;7(1):41–8.

    PubMed  CAS  Google Scholar 

  • Sharp RG, et al. Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Sci Hortic. 2009;120(4):511–7.

    Google Scholar 

  • Sherrard ME, Maherali H. The adaptive significance of drought escape in Avena barbata, an annual grass. Evolution. 2006;60(12):2478–89.

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58(2):221–7.

    PubMed  CAS  Google Scholar 

  • Simpson G. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol. 2004;7(5):570–4.

    PubMed  CAS  Google Scholar 

  • Simpson GG, Gendall AR, Dean C. When to switch to flowering. Annu Rev Cell Dev Biol. 1999;15:519–50.

    PubMed  CAS  Google Scholar 

  • Song YH, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science. 2012;336(6084):1045–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Soon FF, et al. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science. 2012;335(6064):85–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava AK, et al. An analysis on citrus flowering-A review. Agric Rev Agri Res Commun Centre India. 2000;21(1):1–15.

    Google Scholar 

  • Su Z, et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in arabidopsis. Plant Cell. 2013;25(10):3785–807.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Suarez-Lopez P, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 2001;410(6832):1116–20.

    PubMed  CAS  Google Scholar 

  • Sussex I. Developmental programming of the shoot meristem. Cell. 1989;56(2):225–9.

    PubMed  CAS  Google Scholar 

  • Suzuki H, et al. Differential expression and affinities of Arabidopsis gibberellin receptors can explain variation in phenotypes of multiple knock-out mutants. Plant J. 2009;60(1):48–55.

    PubMed  CAS  Google Scholar 

  • Suzuki M, et al. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol. 2003;132(3):1664–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari SB et al. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a uniquecis-element. New Phytol 2010;1–10.

    Google Scholar 

  • Toh S, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146(3):1368–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Umezawa T et al. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in arabidopsis thaliana. Science Signal 2013;6(270), p.rs8.

    Google Scholar 

  • Umezawa T, et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 2010;51(11):1821–39.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Umezawa T et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 2009;106(41):17588–593.

    Google Scholar 

  • Uno Y, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Nat Acad Sci USA. 2000;97(21):11632–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Valverde F, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science. 2004;303(5660):1003–6.

    PubMed  CAS  Google Scholar 

  • Verslues PE, Juenger TE. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol. 2011;14(3):240–5.

    PubMed  CAS  Google Scholar 

  • Vlad F, et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in arabidopsis. Plant Cell. 2009;21(10):3170–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wahl V, et al. Regulation of flowering by trehalose-6-phosphate signaling in arabidopsis thaliana. Science. 2013;339(6120):704–7.

    PubMed  CAS  Google Scholar 

  • Wang J-W, et al. miR156-Regulated SPL transcription factors define an endogenous flowering pathway in arabidopsis thaliana. Cell. 2009;138(4):738–49.

    PubMed  CAS  Google Scholar 

  • Wang P et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA 2013a;110(27):11205–10.

    Google Scholar 

  • Wang Y, et al. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot. 2013b;64(2):675–84.

    CAS  Google Scholar 

  • Weiss D, Ori N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 2007;144(3):1240–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wenkel S, et al. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell. 2006;18(11):2971–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wigge PA, et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science. 2005;309(5737):1056–9.

    PubMed  CAS  Google Scholar 

  • Wilmowicz E, et al. Involvement of aba in flower induction of Pharbitis nil. Acta Societatis Botanicorum Poloniae. 2011;80(1):21.

    CAS  Google Scholar 

  • Wilmowicz E, et al. Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol. 2008;165(18):1917–28.

    PubMed  CAS  Google Scholar 

  • Wilson R, et al. Gibberellin is required for flowering in arabidopsis-thaliana under short days. Plant Physiol. 1992;100(1):403–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wong CE, et al. Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J. 2009;57(5):832–45.

    PubMed  CAS  Google Scholar 

  • Xi W, et al. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell. 2010;22(6):1733–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong L, et al. The arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress–and osmotic stress–responsive gene expression. Plant Cell. 2001;13(9):2063–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong L, et al. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in arabidopsis. J Biol Chem. 2002a;277(10):8588–96.

    PubMed  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Tanaka Y, et al. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci USA. 2002b;99(16):10899–904.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xu JL, et al. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet. 2005;111(8):1642–50.

    PubMed  CAS  Google Scholar 

  • Xu P, et al. Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol. 2009;149(2):760–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yalovsky S, et al. Functional requirement of plant farnesyltransferase during development in Arabidopsis. Plant Cell. 2000;12(8):1267–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi A, et al. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 2005;46(8):1175–89.

    PubMed  CAS  Google Scholar 

  • Yoshida T, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010;61(4):672–85.

    PubMed  CAS  Google Scholar 

  • Zhang W, et al. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics (Oxford, England). 2005;21(14):3074–81.

    CAS  Google Scholar 

  • Zhang X, et al. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 2009;276(1673):1532–43.

    Google Scholar 

  • Zheng Z, et al. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in arabidopsis. Plant Physiol. 2010;153(1):99–113.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu S-Y, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 2007;19(10):3019–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo Z, et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol. 2011;21(10):841–7.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Conti, L., Galbiati, M., Tonelli, C. (2014). ABA and the Floral Transition. In: Zhang, DP. (eds) Abscisic Acid: Metabolism, Transport and Signaling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9424-4_18

Download citation

Publish with us

Policies and ethics