Skip to main content

A Developmental-Physiological Perspective on the Development and Evolution of Phenotypic Plasticity

  • Chapter
  • First Online:
Conceptual Change in Biology

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 307))

Abstract

Our understanding of the development and evolution of phenotypic plasticity has evolved in the 30 years since the first Dahlem conference on development and evolution. The focus of this review is on the developmental mechanisms that produce alternative and conditional phenotypes in response to environmental signals. The role of environment is a critical factor in evolution, yet environment is almost universally ignored in developmental biology. The effects of environment are most clearly seen in postembryonic development, where the mechanisms by which environmental signals alter developmental trajectories are increasingly well understood. The outcome of altered developmental pathways is what we recognize as phenotypic plasticity. This chapter shows that the developmental mechanisms that produce phenotypic plasticity are diverse and that control resides largely at the physiological level, often via developmental hormones that switch between alternative developmental fates in response to environmental signals. In conclusion this chapters shows how robustness and homeostatic mechanisms are they key to understanding the evolution of conditional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth highlighting that this is in contrast to others who have focused on phenotypic plasticity (Stearns, Chap. 6, this volume). My primary concern has been uncovering the developmental and physiological mechanisms of phenotypic plasticity, rather than articulating an abstract theory of phenotypic plasticity (e.g., life history theory).

References

  • Abouheif, E. 2003. A framework for studying the evolution of gene networks underlying polyphenism: insights from winged and wingless ant castes. In Environment, development, and evolution: Toward a synthesis, ed. B.K. Hall, R.D. Pearson, and G.B. Muller, 125–137. Cambridge, MA: MIT Press.

    Google Scholar 

  • Abouheif, E., and G. Wray. 2002. Evolution of the gene network underlying wing polyphenism in ants. Science 297: 249–252.

    Google Scholar 

  • Affolter, M., and K. Basler. 2007. The decapentaplegic morphogen gradient: From pattern formation to growth regulation. Nature Reviews Genetics 8: 663–674.

    Google Scholar 

  • Alpatov, W.W. 1930. Phenotypical variation in body and cell size of Drosophila melanogaster. Biological Bulletin 58: 85–103.

    Google Scholar 

  • Angers, B., E. Castonguay, and R. Massicotte. 2010. Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Molecular Ecology 19: 1283–1295.

    Google Scholar 

  • Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake. 1999. Notch signaling: Cell fate control and signal integration in development. Science 284: 770–776.

    Google Scholar 

  • Atkinson, D. 1994. Temperature and organism size—a biological law for ectotherms? In Advances in ecological research (volume 25), ed. M. Begon and A.H. Fitter, 1–58. London: Academic.

    Google Scholar 

  • Azevedo, R.B.R., V. French, and L. Partridge. 2002. Temperature modulates epidermal cell size in Drosophila melanogaster. Journal of Insect Physiology 48: 231–237.

    Google Scholar 

  • Baena-López, L.A., A. Baonza, and A. García-Bellido. 2005. The orientation of cell divisions determines the shape of Drosophila organs. Current Biology 15: 1640–1644.

    Google Scholar 

  • Baker, J., J.-P. Liu, E.J. Robertson, and A. Efstratiadis. 1993. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75: 73–82.

    Google Scholar 

  • Baldwin, J.M. 1896. A new factor in evolution. American Naturalist 30: 536–553.

    Google Scholar 

  • Bento, G., A. Ogawa, and R.J. Sommer. 2010. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466: 494–497.

    Google Scholar 

  • Blank, L., L. Kuepfer, and U. Sauer. 2005. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biology 6: R49.

    Google Scholar 

  • Bohni, R., J. Riesgo-Escovar, S. Oldham, W. Brogiolo, H. Stocker, B.F. Andruss, K. Beckingham, and E. Hafen. 1999. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97: 865–875.

    Google Scholar 

  • Bonner, J.T. (ed.). 1982. Evolution and development. Report of the Dahlem workshop on evolution and development Berlin 1981, May 10–15. Berlin: Springer.

    Google Scholar 

  • Bonner, J.T., and H.S. Horn. 1982. Selection for size, shape, and developmental timing. In Evolution and development, ed. J.T. Bonner, 259–276. Berlin: Springer.

    Google Scholar 

  • Brandman, O., and T. Meyer. 2008. Feedback loops shape cellular signals in space and time. Science 322: 390–395.

    Google Scholar 

  • Brogiolo, W., H. Stocker, T. Ikeya, F. Rintelen, R. Fernandez, and E. Hafen. 2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology 11: 213–221.

    Google Scholar 

  • Browder, M.H., L.J. D’Amico, and H.F. Nijhout. 2001. The role of low levels of juvenile hormone esterase in the metamorphosis of Manduca sexta. Journal of Insect Science 1: 11.

    Google Scholar 

  • Carroll, S.B., J.K. Grenier, and S.D. Weatherbee. 2004. From DNA to diversity: Molecular genetics and the evolution of animal design. Malden: Blackwell Science.

    Google Scholar 

  • Cherbas, L., X. Hu, I. Zhimulev, E. Belyaeva, and P. Cherbas. 2003. EcR isoforms in Drosophila: Testing tissue-specific requirements by targeted blockade and rescue. Development 130: 271–284.

    Google Scholar 

  • Chiang, R.G., and K.G. Davey. 1988. A novel receptor capable of monitoring applied pressure in the abdomen of an insect. Science 241: 1665–1667.

    Google Scholar 

  • Davidowitz, G., L.J. D’Amico, and H.F. Nijhout. 2003. Critical weight in the development of insect body size. Evolution & Development 5: 188–197.

    Google Scholar 

  • Day, S., and P. Lawrence. 2000. Measuring dimensions: The regulation of size and shape. Development 127: 2977–2987.

    Google Scholar 

  • De Moed, G.H., G. De Jong, and W. Scharloo. 1997. Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genetics Research 70: 35–43.

    Google Scholar 

  • Denlinger, D.L. 2002. Regulation of diapause. Annual Review of Entomology 47: 93–122.

    Google Scholar 

  • Deutscher, D., I. Meilijson, M. Kupiec, and E. Ruppin. 2006. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nature Genetics 38: 993–998.

    Google Scholar 

  • Doane, W.W. 1973. Role of hormones in insect development. In Developmental systems: Insects, ed. S.J. Counce and C.H. Waddington, 291–497. London: Academic.

    Google Scholar 

  • Edwards, J.S., and B.O. Palsson. 2000. Robustness analysis of the Escherichia coli metabolic network. Biotechnology Progress 16: 927–939.

    Google Scholar 

  • Elango, N., B.G. Hunt, M.A.D. Goodisman, and S.V. Yi. 2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America 106: 11206–11211.

    Google Scholar 

  • Emlen, D.J., and C.E. Allen. 2003. Genotype to phenotype: Physiological control of trait size and scaling in insects. Integrative and Comparative Biology 43: 617–634.

    Google Scholar 

  • Emlen, D.J., and H.F. Nijhout. 2000. The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology 5: 661–708.

    Google Scholar 

  • Emlen, D.J., and H.F. Nijhout. 2001. Hormonal control of male horn length dimorphism in Onthophagus taurus (Coleoptera: Scarabaeidae): A second critical period of sensitivity to juvenile hormone. Journal of Insect Physiology 47: 1045–1054.

    Google Scholar 

  • Evans, J., and D. Wheeler. 1999. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America 96: 5575–5580.

    Google Scholar 

  • Evans, J., and D. Wheeler. 2001. Gene expression and the evolution of insect polyphenisms. Bioessays 23: 62–68.

    Google Scholar 

  • Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative genetics. Harlow: Addison Wesley Longman.

    Google Scholar 

  • Feener Jr., D.H., J.R.B. Lighton, and G.A. Bartholomew. 1988. Curvilinear allometry, energetics and foraging ecology: A comparison of leaf-cutting ants and army ants. Functional Ecology 2: 509–520.

    Google Scholar 

  • Fisher, R.A. 1930. The genetical theory of natural selection. Oxford: Oxford University Press.

    Google Scholar 

  • García-Bellido, A., F. Cortés, and M. Milán. 1994. Cell interactions in the control of size in Drosophila wings. Proceedings of the National Academy of Sciences of the United States of America 91: 10222–10226.

    Google Scholar 

  • Gerhart, J.C. 1982. The cellular basis of morphogenetic change. Group report. In Evolution and development, ed. J.T. Bonner, 87–114. Berlin: Springer.

    Google Scholar 

  • Gibson, G., and I. Dworkin. 2004. Uncovering cryptic genetic variation. Nature Reviews Genetics 5: 681–690.

    Google Scholar 

  • Gilbert, S.F. 2003. Evo-devo, Devo-evo, and Devgen-Popgen. Biology and Philosophy 18: 347–352.

    Google Scholar 

  • Gilbert, S. 2005. Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences 30: 65–74.

    Google Scholar 

  • Gilbert, S.F., and D. Epel. 2009. Ecological developmental biology: Integrating epigenetics, medicine, and evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Gillott, C. 1995. Entomology. New York: Springer.

    Google Scholar 

  • Goss, R.J. 1968. Inhibition of growth and shedding of antlers by sex hormones. Nature 204: 798–799.

    Google Scholar 

  • Gould, S.J. 1977. Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gould, S.J. 1982. Change in developmental timing as a mechanism of macroevolution. In Evolution and development, ed. J.T. Bonner, 333–346. Berlin: Springer.

    Google Scholar 

  • Grimberg, A., and P. Cohen. 2000. Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. Journal of Cellular Physiology 183: 1–9.

    Google Scholar 

  • Guyton, A.C. 1981. Textbook of medical physiology. New York: Saunders.

    Google Scholar 

  • Haldane, J.B.S. 1924. A mathematical theory of natural and artificial selection. Transactions of the Cambridge Philosophical Society 23: 19–41.

    Google Scholar 

  • Hardie, J. 1987. The corpus allatum, neurosecretion and photoperiodically controlled polymorphism in an aphid. Journal of Insect Physiology 33: 201–205.

    Google Scholar 

  • Hodin, J. 2009. On the origins of insect hormone signaling. In Phenotypic plasticity of insects. Mechanisms and consequences, ed. D.W. Whitman and T.N. Ananthakrishnan, 817–839. Enfield: Science Publishers.

    Google Scholar 

  • Huxley, J.S. 1932. Problems of relative growth. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Jarosz, D.F., and S. Lindquist. 2010. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330: 1820–1824.

    Google Scholar 

  • Jesudason, P., K. Venkatesh, and R.M. Roe. 1990. Haemolymph juvenile hormone esterase during the life cycle of the tobacco hornworm, Manduca sexta (L.). Insect Biochemistry 20: 593–604.

    Google Scholar 

  • Jindra, M., F. Malone, K. Hiruma, and L. Riddiford. 1996. Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Developmental Biology 180: 258–272.

    Google Scholar 

  • Kato, Y., and L.M. Riddiford. 1987. The role of 20-hydroxyecdysone in stimulating epidermal mitoses during the larval-pupal transformation of the tobacco hornworm, Manduca sexta. Development 100: 227–236.

    Google Scholar 

  • Kawano, K. 1995. Horn and wing allometry and male dimorphism in giant rhinoceros beetles (Coleoptera: Scarabaeidae) of tropical Asia and America. Annals of the Entomological Society of America 88: 92–99.

    Google Scholar 

  • Koch, P., and D. Bückmann. 1987. Hormonal control of seasonal morphs by the timing of ecdysteroid release in Araschnia levana L. (Nymphalidae: Lepidoptera). Journal of Insect Physiology 33: 823–829.

    Google Scholar 

  • Kopp, A., and I. Duncan. 2002. Anteroposterior patterning in adult abdominal segments of Drosophila. Developmental Biology 242: 15–30.

    Google Scholar 

  • Kremen, C., and H. Nijhout. 1998. Control of pupal commitment in the imaginal disks of Precis coenia (Lepidoptera: Nymphalidae). Journal of Insect Physiology 44: 287–296.

    Google Scholar 

  • Kronforst, M.R., D.C. Gilley, J.E. Strassmann, and D.C. Queller. 2008. DNA methylation is widespread across social Hymenoptera. Current Biology 18: R287–R288.

    Google Scholar 

  • Love, A.C. 2010. Idealization in evolutionary developmental investigation: A tension between phenotypic plasticity and normal stages. Philosophical Transactions of the Royal Society, B: Biological Sciences 365: 679–690.

    Google Scholar 

  • Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sunderland: Sinauer Associates.

    Google Scholar 

  • Maderson, P.F.A. 1982. The role of development in macroevolutionary change. Group report. In Evolution and development, ed. J.T. Bonner, 279–312. Berlin: Springer.

    Google Scholar 

  • Martin, D.E., and M.N. Hall. 2005. The expanding TOR signaling network. Current Opinion in Cell Biology 17: 158–166.

    Google Scholar 

  • Martin-Castellanos, C., and B. Edgar. 2002. A characterization of the effects of Dpp signaling on cell growth and proliferation in the Drosophila wing. Development 129: 1003–1013.

    Google Scholar 

  • Milan, M., S. Campuzano, and A. Garcia-Bellido. 1996. Cell cycling and patterned cell proliferation in the Drosophila wing during metamorphosis. Proceedings of the National Academy of Sciences of the United States of America 93: 11687–11692.

    Google Scholar 

  • Mitchell-Olds, T., and C.A. Knight. 2002. Chaperones as buffering agents? Science and Culture 296: 2348–2349.

    Google Scholar 

  • Moczek, A.P. 2003. The behavioral ecology of threshold evolution in a polyphenic beetle. Behavioral Ecology and Sociobiology 14: 831–854.

    Google Scholar 

  • Moczek, A.P., and H.F. Nijhout. 2002. Developmental mechanisms of threshold evolution in a polyphenic beetle. Evolution & Development 4: 252–264.

    Google Scholar 

  • Moczek, A.P., and H.F. Nijhout. 2003. Rapid evolution of a polyphenic threshold. Evolution & Development 5: 259–268.

    Google Scholar 

  • Moczek, A.P., and H.F. Nijhout. 2004. Trade-offs during the development of primary and secondary sexual traits in a horned beetle. American Naturalist 163: 184–191.

    Google Scholar 

  • Moczek, A.P., and E.C. Snell-Rood. 2008. The basis of bee-ing different: The role of gene silencing in plasticity. Evolution & Development 10: 511–513.

    Google Scholar 

  • Moczek, A.P., J. Hunt, D.J. Emlen, and L.W. Simmons. 2002. Threshold evolution in exotic populations of a polyphenic beetle. Evolutionary Ecology Research 4: 587–601.

    Google Scholar 

  • Nahmad, M., L. Glass, and E. Abouheif. 2008. The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: A mathematical model. Evolution & Development 10: 360–374.

    Google Scholar 

  • Neufeld, T.P., A.F.A. de la Cruz, L.A. Johnston, and B.A. Edgar. 1998. Coordination of growth and cell division in the Drosophila wing. Cell 93: 1183–1193.

    Google Scholar 

  • Neumann, C., and S. Cohen. 1997. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124: 871–880.

    Google Scholar 

  • Nijhout, H.F. 1975. Dynamics of juvenile hormone action in larvae of the tobacco hornworm, Manduca sexta (L.). Biological Bulletin 149: 568–579.

    Google Scholar 

  • Nijhout, H.F. 1979. Stretch-induced moulting in Oncopeltus fasciatus. Journal of Insect Physiology 25: 277–282.

    Google Scholar 

  • Nijhout, H.F. 1984. Abdominal stretch reception in Dipetalogaster maximus (Hemiptera: Reduviidae). Journal of Insect Physiology 30: 629–633.

    Google Scholar 

  • Nijhout, H.F. 1994. Insect hormones. Princeton: Princeton University Press.

    Google Scholar 

  • Nijhout, H.F. 1999. Control mechanisms of polyphenic development in insects. Bioscience 49: 181–192.

    Google Scholar 

  • Nijhout, H.F. 2003a. The control of body size in insects. Developmental Biology 261: 1–9.

    Google Scholar 

  • Nijhout, H.F. 2003b. Development and evolution of adaptive polyphenisms. Evolution & Development 5: 9–18.

    Google Scholar 

  • Nijhout, H.F. 2009. Photoperiodism: Effects on insect morphology. In Photoperiodism. The biological calendar, ed. R.J. Nelson, D.L. Denlinger, and D.E. Somers, 318–341. New York: Oxford University Press.

    Google Scholar 

  • Nijhout, H.F., and G. Davidowitz. 2003. Developmental perspectives on phenotypic variation, canalization, and fluctuating asymmetry. In Developmental Instability. Causes and consequences, ed. M. Polak, 3–13. Oxford: Oxford University Press.

    Google Scholar 

  • Nijhout, H.F., and D.J. Emlen. 1998. Competition among body parts in the development and evolution of insect morphology. Proceedings of the National Academy of Sciences of the United States of America 95: 3685–3689.

    Google Scholar 

  • Nijhout, H.F., and L.W. Grunert. 2002. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 99: 15446–15450.

    Google Scholar 

  • Nijhout, H.F., and L.W. Grunert. 2010. The cellular and physiological mechanism of wing-body scaling in Manduca sexta. Science 330: 1693–1695.

    Google Scholar 

  • Nijhout, H.F., and D.E. Wheeler. 1996. Growth models of complex allometries in holometabolous insects. American Naturalist 148: 40–56.

    Google Scholar 

  • Nijhout, H.F., and C.M. Williams. 1974a. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. Journal of Experimental Biology 61: 493–501.

    Google Scholar 

  • Nijhout, H.F., and C.M. Williams. 1974b. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): Growth of the last-instar larva and the decision to pupate. Journal of Experimental Biology 61: 481–491.

    Google Scholar 

  • Nijhout, H.F., G. Davidowitz, and D.A. Roff. 2006a. A quantitative analysis of the mechanism that controls body size in Manduca sexta. Journal of Biology 5: 16.

    Google Scholar 

  • Nijhout, H.F., M.C. Reed, D.F. Anderson, J.C. Mattingly, S.J. James, and C.M. Ulrich. 2006b. Long-range allosteric interactions between the folate and methionine cycles stabilize DNA methylation reaction rate. Epigenetics 1: 81–87.

    Google Scholar 

  • Nijhout, H.F., W.A. Smith, I. Schachar, S. Subramanian, A. Tobler, and L.W. Grunert. 2007. The control of growth and differentiation of the wing imaginal disks of Manduca sexta. Developmental Biology 302: 569–576.

    Google Scholar 

  • Nijhout, H.F., M. Reed, and C.M. Ulrich. 2008. Mathematical models of one-carbon metabolism. Vitamins and Hormones 79: 45–82.

    Google Scholar 

  • Oda, S., Y. Kato, H. Watanabe, N. Tatarazako, and T. Iguchi. 2011. Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Environmental Toxicology and Chemistry 30: 232–238.

    Google Scholar 

  • Oldham, S., R. Bohni, H. Stocker, W. Brogiolo, and E. Hafen. 2000. Genetic control of size in Drosophila. Philosophical Transactions of the Royal Society, B: Biological Sciences 355: 945–952.

    Google Scholar 

  • Oldham, S., H. Stocker, M. Laffargue, F. Wittwer, M. Wymann, and E. Hafen. 2002. The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development 129: 4103–4109.

    Google Scholar 

  • Oostra, V., M.A. de Jong, B.M. Invergo, F. Kesbeke, F. Wende, P.M. Brakefield, and B.J. Zwaan. 2010. Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly. Proceedings of the Royal Society B: Biological Sciences 278: 789–797.

    Google Scholar 

  • Orr, H.A. 1998. The population genetics of adaptation: The distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Partridge, L., B. Barrie, K. Fowler, and V. French. 1994. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48: 1269–1276.

    Google Scholar 

  • Parzer, H.F., and A.P. Moczek. 2008. Rapid antagonistic coevolution between primary and secondary sexual characters in horned beetles. Evolution 62: 2423–2428.

    Google Scholar 

  • Pfennig, D.W. 1992. Proximate and functional causes of polyphenism in an anuran tadpole. Functional Ecology 6: 167–174.

    Google Scholar 

  • Polak, M. (ed.). 2003. Developmental instability. Causes and consequences. Oxford: Oxford University Press.

    Google Scholar 

  • Ralph, C.L. 1969. The control of color in birds. American Zoologist 9: 521–530.

    Google Scholar 

  • Reed, M.C., A. Lieb, and H.F. Nijhout. 2010. The biological significance of substrate inhibition: A mechanism with diverse functions. Bioessays 32: 422–429.

    Google Scholar 

  • Resino, J., P. Salama-Cohen, and A. García-Bellido. 2002. Determining the role of patterned cell proliferation in the shape and size of the Drosophila wing. Proceedings of the National Academy of Sciences of the United States of America 99: 7502–7507.

    Google Scholar 

  • Riddiford, L.M., P. Cherbas, and J.W. Truman. 2000. Ecdysone receptors and their biological actions. Vitamins and Hormones 60: 1–73.

    Google Scholar 

  • Roberts, S.P., and M.E. Feder. 2000. Changing fitness consequences of hsp70 copy number in transgenic Drosophila larvae undergoing natural thermal stress. Functional Ecology 14: 353–357.

    Google Scholar 

  • Robertson, F.W. 1955. The ecological genetics of growth in Drosophila. 2. Selection for large body size on different diets. Genetics Research 1: 305–318.

    Google Scholar 

  • Robertson, F.W. 1959. Studies in quantitative inheritance. XII. Cell size and number in relation to genetic and environmental variation of body size in Drosophila. Genetics 44: 869–896.

    Google Scholar 

  • Rountree, D.B., and W.E. Bollenbacher. 1984. Juvenile hormone regulates ecdysone secretion through inhibition of PTTH release. American Zoologist 24: A31.

    Google Scholar 

  • Rountree, D.B., and H.F. Nijhout. 1995. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). Journal of Insect Physiology 41: 987–992.

    Google Scholar 

  • Rulifson, E.J., S.K. Kim, and R. Nusse. 2002. Ablation of insulin-producing neurons in flies: Growth and diabetic phenotypes. Science 296: 1118–1120.

    Google Scholar 

  • Rutherford, S.L., and S. Lindquist. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.

    Google Scholar 

  • Santoro, M.G. 2000. Heat shock factors and the control of the stress response. Biochemical Pharmacology 59: 55–63.

    Google Scholar 

  • Scharf, M.E., D. Wu-Scharf, B.R. Pittendrigh, and G.W. Bennett. 2003. Caste- and development associated gene expression in a lower termite. Genome Biology 4: R62.

    Google Scholar 

  • Schlichting, C.D., and M. Pigliucci. 1998. Phenotypic evolution: A reaction norm perspective. Sunderland: Sinauer Associates.

    Google Scholar 

  • Schmalhausen, I.I. 1949. Factors of evolution. Philadelphia: Blakiston.

    Google Scholar 

  • Schmidt-Nielsen, K. 1997. Animal physiology. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Schneiderman, H.A., and L.I. Gilbert. 1964. Control of growth and development in insects. Science 143: 325–333.

    Google Scholar 

  • Schubiger, M., S. Tomita, C. Sung, S. Robinow, and J.W. Truman. 2003. Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mechanisms of Development 120: 909–918.

    Google Scholar 

  • Shingleton, A.W. 2010. The regulation of organ size in Drosophila: Physiology, plasticity, patterning and physical force. Organogenesis 6: 1–12.

    Google Scholar 

  • Shingleton, A.W., C.M. Estep, M.V. Driscoll, and I. Dworkin. 2009. Many ways to be small: Different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences 276: 2625–2633.

    Google Scholar 

  • Siegfried, Z., and I. Simon. 2010. DNA methylation and gene expression. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2: 362–371.

    Google Scholar 

  • Snell-Rood, E.C., J.D. Van Dyken, T. Cruickshank, M.J. Wade, and A.P. Moczek. 2010. Toward a population genetic framework of developmental evolution: The costs, limits, and consequences of phenotypic plasticity. Bioessays 32: 71–81.

    Google Scholar 

  • Stearns, S.C. 1982. The role of development in the evolution of life histories. In Evolution and development, ed. J.T. Bonner, 237–258. Berlin: Springer.

    Google Scholar 

  • Stearns, S., G. de Jong, and B. Newman. 1991. The effects of phenotypic plasticity on genetic correlations. Trends in Ecology and Evolution 6: 122–126.

    Google Scholar 

  • Stern, D.L., and D.J. Emlen. 1999. The developmental basis for allometry in insects. Development 126: 1091–1101.

    Google Scholar 

  • Suttie, J.M., G.A. Lincoln, and R.N.B. Kay. 1984. Endocrine control of antler growth in red deer stags. Journal of Reproduction and Fertility 71: 7–15.

    Google Scholar 

  • Suzuki, Y., and H.F. Nijhout. 2006. Evolution of a polyphenism by genetic accommodation. Science 311: 650–652.

    Google Scholar 

  • Talbot, W.S., E.A. Swyryd, and D.S. Hogness. 1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73: 1323–1337.

    Google Scholar 

  • Tanaka, S. 2000. Hormonal control of body-color polymorphism in Locusta migratoria: Interaction between [His7]-corazonin and juvenile hormone. Journal of Insect Physiology 46: 1535–1544.

    Google Scholar 

  • Tanaka, S. 2004. Hormonal control of body-color polyphenism in the American grasshopper, Schistocerca americana: A function of [His7]-corazonin. Annals of the Entomological Society of America 97: 302–309.

    Google Scholar 

  • Tobler, A., and H.F. Nijhout. 2010. A switch in the control of growth of the wing imaginal disks of Manduca sexta. PLoS One 5: e10723.

    Google Scholar 

  • Truman, J.W., W.S. Talbot, S.E. Fahrbach, and D.S. Hogness. 1994. Ecdysone receptor expression in the CNS correlates with stage-specific responses to ecdysteroids during Drosophila and Manduca development. Development 120: 219–234.

    Google Scholar 

  • Waddington, C.H. 1953. Genetic assimilation of an acquired character. Evolution 7: 118–126.

    Google Scholar 

  • Waddington, C.H. 1956. Genetic assimilation of the bithorax phenotype. Evolution 10: 1–13.

    Google Scholar 

  • Wagner, A. 2005. Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Google Scholar 

  • Wagner, G.P., C.-H. Chiu, and T.F. Hansen. 1999. Is Hsp90 a regulator of evolvability? Journal of Experimental Zoology (Molecular and Developmental Evolution) 285: 116–118.

    Google Scholar 

  • Walters, Richard J., and M. Hassall. 2006. The temperature-size rule in ectotherms: May a general explanation exist after all? American Naturalist 167: 510–523.

    Google Scholar 

  • West-Eberhard, M.J. 2003. Developmental plasticity and evolution. New York: Oxford University Press.

    Google Scholar 

  • Wheeler, D.E. 1991. The developmental basis of worker caste polymorphism in ants. American Naturalist 138: 1218–1238.

    Google Scholar 

  • Wheeler, D.E., and H.F. Nijhout. 1981. Soldier determination in ants: New role for juvenile hormone. Science 213: 361–363.

    Google Scholar 

  • Wheeler, D.E., and H.F. Nijhout. 1983. Soldier determination in Pheidole bicarinata: Effect of methoprene on caste and size within castes. Journal of Insect Physiology 29: 847–854.

    Google Scholar 

  • Wheeler, D.E., and H.F. Nijhout. 1984. Soldier determination in Pheidole bicarinata: Inhibition by adult soldiers. Journal of Insect Physiology 30: 127–135.

    Google Scholar 

  • Wheeler, D.E., and H.F. Nijhout. 2003. A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. Bioessays 25: 994–1001.

    Google Scholar 

  • Williams, J.B., S.P. Roberts, and M.M. Elekonich. 2009. Heat shock proteins and their role in generating, maintaining and even preventing alternative insect phenotypes. In Phenotypic plasticity of insects. Mechanisms and consequences, ed. D.W. Whitman and T.N. Ananthakrishnan, 741–766. Enfield: Science Publishers.

    Google Scholar 

  • Witschi, E. 1935. Seasonal sex characters in birds and their hormonal control. The Wilson Bulletin 47: 177–188.

    Google Scholar 

  • Woltereck, R. 1909. Weitere experimentelle Untersuchungen über Artveränderung, speziell über das Wesen quantitativer Artunterschiede bei Daphnien. Verhandlungen der Deutschen Zoologischen Gesellschaft 19: 110–173.

    Google Scholar 

  • Young, J.C., I. Moarefi, and F.U. Hartl. 2001. Hsp90. Journal of Cell Biology 154: 267–274.

    Google Scholar 

  • Zera, A.J. 2003. The endocrine regulation of wing polymorphism in insects: State of the art, recent surprises, and future directions. Integrative and Comparative Biology 43: 607–616.

    Google Scholar 

Download references

Acknowledgements

Work in my laboratory has been supported by grants from the National Science Foundation. I thank Mary Jane West-Eberhard for many fruitful discussions and help in building Table 7.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Frederik Nijhout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nijhout, H.F. (2015). A Developmental-Physiological Perspective on the Development and Evolution of Phenotypic Plasticity. In: Love, A. (eds) Conceptual Change in Biology. Boston Studies in the Philosophy and History of Science, vol 307. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9412-1_7

Download citation

Publish with us

Policies and ethics