Skip to main content

Is Heterochrony Still an Effective Paradigm for Contemporary Studies of Evo-devo?

  • Chapter
  • First Online:
Book cover Conceptual Change in Biology

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 307))

Abstract

Heterochrony, or change in the relative timing of developmental events, has been a dominant concept in the study of the relation between evolution and development since even before the term was coined in the mid-nineteenth century. Its popularity exploded beginning in the late 1970s and 1980s as part of the resurgence of interest in Evo-devo that also began at that time, and reflecting a basic premise that heterochronic analysis is indispensible to a meaningful understanding and explanation of morphological diversification. Yet the gradual recognition that the molecular and developmental mechanisms that underlie morphological evolution may be understood more effectively in terms of other processes has increasingly qualified the universality of heterochrony as an explanatory tool. Consequently, while heterochrony still has an important role to play in contemporary studies of Evo-devo, it is not an all-encompassing and exclusive role. Instead, a more nuanced view of heterochrony—as an important paradigm, but not the sole paradigm—provides a more comprehensive depiction and understanding of the developmental basis of evolutionary change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov, A., M. Protas, B.R. Grant, P.R. Grant, and C.J. Tabin. 2004. Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305: 1462–1465.

    Article  Google Scholar 

  • Abzhanov, A., W.P. Kuo, C. Hartmann, B.R. Grant, P.R. Grant, and C.J. Tabin. 2006. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442: 563–567.

    Article  Google Scholar 

  • Alberch, P. 1983. Morphological variation in the neotropical salamander genus Bolitoglossa. Evolution 37: 906–919.

    Article  Google Scholar 

  • Alberch, P., S.J. Gould, G. Oster, and D. Wake. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–317.

    Google Scholar 

  • Ambros, V., and H.R. Horvitz. 1984. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226: 409–416.

    Article  Google Scholar 

  • Bininda-Emonds, O.R.P., J.E. Jeffrey, and M.K. Richardson. 2003. Is sequence heterochrony an important evolutionary mechanism in mammals? Journal of Mammalian Evolution 10: 335–361.

    Article  Google Scholar 

  • Bonner, J.T. (ed.). 1982. Evolution and development. Report of the Dahlem workshop on evolution and development Berlin 1981, May 10–15. Berlin: Springer.

    Google Scholar 

  • Brylski, P., and B.K. Hall. 1988a. Epithelial behaviors and threshold effects in the development and evolution of internal and external cheek pouches in rodents. Journal of Zoological Systematics and Evolutionary Research 26: 144–154.

    Article  Google Scholar 

  • Brylski, P., and B.K. Hall. 1988b. Ontogeny of a macroevolutionary phenotype: The external cheek pouches of geomyoid rodents. Evolution 42: 391–395.

    Article  Google Scholar 

  • Campàs, O., R. Mallarino, A. Herrell, A. Abzhanov, and M.P. Brenner. 2010. Scaling and shear transformations capture beak shape variation in Darwin’s finches. Proceedings of the National Academy of Sciences of the United States of America 107: 3356–3360.

    Article  Google Scholar 

  • Carroll, S.B., J.K. Grenier, and S.D. Weatherbee. 2005. From DNA to diversity: Molecular genetics and the evolution of animal design, 2nd ed. Malden: Blackwell Science.

    Google Scholar 

  • Churchill, F.B. 1980. The modern evolutionary synthesis and the biogenetic law. In The evolutionary synthesis: Perspectives on the unification of biology, ed. E. Mayr and W.B. Provine, 112–122. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • de Beer, G.R. 1930. Embryology and evolution. Oxford: Clarendon Press.

    Google Scholar 

  • de Beer, G.R. 1940. Embryos and ancestors. Oxford: Clarendon Press.

    Google Scholar 

  • Gerhart, J., and M. Kirschner. 1997. Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Boston: Blackwell Science.

    Google Scholar 

  • Goldschmidt, R. 1940. The material basis of evolution. New Haven: Yale University Press.

    Google Scholar 

  • Goodwin, B.C., N. Holder, and C.C. Wylie (eds.). 1983. Development and evolution: The sixth symposium of the British Society for Developmental Biology. New York: Cambridge University Press.

    Google Scholar 

  • Gould, S.J. 1977. Ontogeny and phylogeny. Cambridge, MA: Belknap Press/Harvard University Press.

    Google Scholar 

  • Gould, S.J. 1982. Change in developmental timing as a mechanism of macroevolution. In Evolution and development, ed. J.T. Bonner, 333–346. Berlin: Springer.

    Chapter  Google Scholar 

  • Guerrant Jr., E.O. 1982. Neotenic evolution of Delphinium nudicaule (Ranunculaceae): A hummingbird-pollinated larkspur. Evolution 36: 699–712.

    Article  Google Scholar 

  • Haeckel, E. 1866. Generelle Morphologie der Organismen. (2 vols). Berlin: Remier.

    Book  Google Scholar 

  • Hall, B.K. 1990. Heterochronic change in vertebrate development. Seminars in Cell and Developmental Biology 1: 237–243.

    Google Scholar 

  • Hall, B.K. 1999. Evolutionary developmental biology. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Hall, B.K. 2001. Foreword. In Beyond heterochrony: The evolution of development, ed. M. Zelditch, vii–ix. New York: Wiley-Liss.

    Google Scholar 

  • Hamburger, V. 1980. Embryology and the modern synthesis in evolutionary theory. In The evolutionary synthesis: Perspectives on the unification of biology, ed. E. Mayr and W.B. Provine, 97–112. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hanken, J. 1984. Miniaturization and its effects on cranial morphology in plethodontid salamanders, genus Thorius (Amphibia: Plethodontidae). I. Osteological variation. Biological Journal of the Linnean Society 23: 55–75.

    Article  Google Scholar 

  • Huxley, J.S. 1932. Problems of relative growth. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Huxley, J. 1942. Evolution: The modern synthesis. London: Allen & Unwin.

    Google Scholar 

  • McKinney, M.L. (ed.). 1988. Heterochrony in evolution: A multidisciplinary approach. New York: Plenum Press.

    Google Scholar 

  • McKinney, M.L., and K.J. McNamara. 1991. Heterochrony: The evolution of ontogeny. New York: Plenum Press.

    Book  Google Scholar 

  • McNamara, K.J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology 60: 4–13.

    Google Scholar 

  • Parichy, D.M. 2001. Pigment patterns of ectothermic vertebrates: Heterochronic vs. nonheterochronic models for pigment pattern evolution. In Beyond heterochrony: The evolution of development, ed. M. Zelditch, 229–269. New York: Wiley-Liss.

    Google Scholar 

  • Radinsky, L. 1983. Allometry and reorganization in horse skull proportions. Science 221: 1189–1191.

    Article  Google Scholar 

  • Raff, R.A. 1996. The shape of life: genes, development and the evolution of animal form. Chicago: Chicago University Press.

    Google Scholar 

  • Raff, R.A., and T.C. Kaufman. 1983. Embryos, genes, and evolution: The developmental-genetic basis of evolutionary change. New York: Macmillan.

    Google Scholar 

  • Raff, R.A., and E.C. Raff (eds.). 1987. Development as an evolutionary process: proceedings of a meeting held at the Marine Biological Laboratory in Woods Hole, Massachusetts, August 23 and 24, 1985. New York: A.R. Liss.

    Google Scholar 

  • Raff, R.A., and G.A. Wray. 1989. Heterochrony: Developmental mechanisms and evolutionary results. Journal of Evolutionary Biology 2: 409–434.

    Article  Google Scholar 

  • Raff, R.A., J.A. Anstrom, C.J. Huffman, D.S. Leaf, J.-H. Loo, R.M. Showman, and D.E. Wells. 1984. Origin of a gene regulatory mechanism in the evolution of echinoderms. Nature 310: 312–314.

    Article  Google Scholar 

  • Reilly, S.M., E.O. Wiley, and D.J. Meinhardt. 1997. An integrative approach to heterochrony: The distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60: 119–143.

    Article  Google Scholar 

  • Richardson, M.K. 1999. Vertebrate evolution: The developmental origins of adult variation. BioEssays 21: 604–613.

    Article  Google Scholar 

  • Roth, G., and D.B. Wake. 1985. Trends in the functional morphology and sensorimotor control of feeding behaviour in salamanders: An example of the role of internal dynamics in evolution. Acta Biotheoretica 34: 175–192.

    Article  Google Scholar 

  • Shea, B.T. 1983. Allometry and heterochrony in the African apes. American Journal of Physical Anthropology 62: 275–289.

    Article  Google Scholar 

  • Thomson, K.S. 1988. Morphogenesis and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Wake, D.B., and A. Larson. 1987. Multidimensional analysis of an evolving lineage. Science 238: 42–48.

    Article  Google Scholar 

  • Wilkins, A.S. 2002. The evolution of developmental pathways. Sunderland: Sinauer Associates.

    Google Scholar 

  • Zelditch, M.L., and W.L. Fink. 1996. Heterochrony and heterotopy: Stability and innovation in the evolution of form. Paleobiology 22: 242–254.

    Google Scholar 

  • Zelditch, M.L., H.D. Sheets, and W.L. Fink. 2000. Spatiotemporal reorganization of growth rates in the evolution of ontogeny. Evolution 54: 1363–1371.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Alan Love for inviting my contribution to this volume and to the corresponding symposium. Melissa Woolley prepared the illustrations. Mary Sears conducted the bibliographic search for “heterochrony.” David Parichy and Arkhat Abzhanov kindly provided copies of their published images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Hanken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hanken, J. (2015). Is Heterochrony Still an Effective Paradigm for Contemporary Studies of Evo-devo?. In: Love, A. (eds) Conceptual Change in Biology. Boston Studies in the Philosophy and History of Science, vol 307. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9412-1_4

Download citation

Publish with us

Policies and ethics