Skip to main content

Hierarchies and Integration in Evolution and Development

  • Chapter
  • First Online:
Conceptual Change in Biology

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 307))

Abstract

This chapter argues that evolutionary developmental biology requires integrative and hierarchical approaches. It explores the nature and contributions of such approaches and the new “tools” and methods of analysis that facilitate the exploration of biological complexity. Because researchers in Evo-devo have usually embraced new methods and the need to examine multiple levels of biological organization, they have gained new insights into major questions and expanded the scientific research agenda.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See van der Steen 1990; Love 2008, regarding multidisciplinarity versus interdisciplinarity.

  2. 2.

    This differs structurally from Love’s (2006) framework for hierarchies, but has the same philosophical underpinning.

References

  • Alberghina, L., and H. Westerhoff (eds.). 2005. Systems biology: Definitions and perspectives. London: Springer.

    Google Scholar 

  • Ankeny, R.A., and S. Leonelli. 2011. What’s so special about model organisms? Studies in History and Philosophy of Science 42: 313–323.

    Article  Google Scholar 

  • Arnold, S. 1983. Morphology, performance, and fitness. American Zoologist 23: 347–361.

    Google Scholar 

  • Barbault, R., J.-F. Guégan, M. Hoshi, J.-C. Mounolou, M. van Baalen, M. Wake, and T. Younés. 2003. Integrative biology and complexity in natural systems: Keys to addressing emerging challenges. Biology International (France) 44: 6–12.

    Google Scholar 

  • Bolker, J.A. 1995. Model systems in developmental biology. BioEssays 17: 451–455.

    Article  Google Scholar 

  • Brigandt, I. 2010. Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis 73: 295–311.

    Article  Google Scholar 

  • Brigandt, I., and A.C. Love. 2010. Evolutionary novelty and the Evo-devo synthesis: Field notes. Evolutionary Biology 37: 93–99.

    Google Scholar 

  • Duboule, D. 2010. The Evo-devo comet. EMBO Reports 11: 489.

    Article  Google Scholar 

  • Dullemeijer, P. 1980. Functional morphology and evolutionary biology. Acta Biotheoretica 29: 151–250.

    Article  Google Scholar 

  • Eldredge, N. 1982. Hierarchies in macroevolution. In Evolutionary paleobiology: In honor of James W Valentine, ed. J.W. Valentine, D. Jablonski, D.H. Erwin, and J.H. Lipps, 42–61. Chicago: University of Chicago Press.

    Google Scholar 

  • Eldredge, N. 1985. Unfinished synthesis: Biological hierarchies and modern evolutionary thought. New York: Oxford University Press.

    Google Scholar 

  • Eldredge, N., and M. Grene. 1992. Interactions: The biological context of social systems. New York: Columbia University Press.

    Google Scholar 

  • Eldredge, N., and S.N. Salthe. 1984. Hierarchy and evolution. Oxford Surveys in Evolutionary Biology 1: 182–206.

    Google Scholar 

  • Gass, G.L., and J.A. Bolker. 2003. Modularity. In Keywords and concepts in evolutionary developmental biology, ed. B.K. Hall and W.M. Olson, 260–267. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gilbert, S.F., and J.A. Bolker. 2001. Homologies of process: Modular elements of embryonic construction. Journal of Experimental Zoology (Molecular and Developmental Evolution) 291: 1–12.

    Article  Google Scholar 

  • Gilbert, S.F., and D. Epel. 2009. Ecological developmental biology: Integrating epigenetics, medicine, and evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Gould, S.J. 1980. Is a new and general theory of evolution emerging? Paleobiology 6: 119–130.

    Google Scholar 

  • Gregory, T.R. 2004. Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology 30: 179–202.

    Article  Google Scholar 

  • Grene, M. 1987. Hierarchies in biology. American Scientist 75: 504–510.

    Google Scholar 

  • Hall, B.K. 1999. Evolutionary developmental biology. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Hall, B.K. 2002. Palaeontology and evolutionary developmental biology: A sciences of the nineteenth and twenty-first centuries. Palaeontology 45: 647–699.

    Article  Google Scholar 

  • Hall, B.K. (ed.). 2007. Fins into limbs: Evolution, development, and transformation. Chicago: University of Chicago Press.

    Google Scholar 

  • Jablonski, D. 2007. Scale and hierarchy in macroevolution. Palaeontology 50: 87–109.

    Article  Google Scholar 

  • Korn, R.W. 2002. Biological hierarchies, their birth, death and evolution by natural selection. Biology and Philosophy 17: 199–221.

    Article  Google Scholar 

  • Lakhotia, S.C. 2001. Integrative biology. New Delhi: Indian National Science Academy.

    Google Scholar 

  • Lauder, G.V. 1981. Form and function: Structural analysis in evolutionary morphology. Paleobiology 7: 430–442.

    Google Scholar 

  • Lauder, G.V. 1982. Introduction. In Form and Function: A contribution to the history of animal morphology. Chicago: University of Chicago Press.

    Google Scholar 

  • Leonelli, S. 2008. Bio-ontologies as tools for integration in biology. Biological Theory 3: 7–11.

    Article  Google Scholar 

  • Linnaeus, C. 1758. Systema naturae per regna tria naturae secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. 10th edition, revised. Stockholm: Holmiae (Laurentii Salvii).

    Google Scholar 

  • Love, A.C. 2003. Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology & Philosophy 18: 309–345.

    Article  Google Scholar 

  • Love, A.C. 2006. Evolutionary morphology and evo–devo: Hierarchy and novelty. Theory in Biosciences 124: 317–333.

    Article  Google Scholar 

  • Love, A.C. 2007. Morphological and paleontological perspectives for a history of Evo-devo. In From embryology to Evo-devo, ed. J. Maienschein and M. Laubichler, 267–307. Cambridge, MA: MIT Press.

    Google Scholar 

  • Love, A.C. 2008. From philosophy to science (to natural philosophy): Evolutionary developmental perspectives. Quarterly Review of Biology 83: 65–76.

    Article  Google Scholar 

  • MacMahon, J.A., D.L. Phillips, J.V. Robinson, and D.J. Schimpf. 1978. Levels of biological organization: An organism-centered approach. BioScience 28: 700–704.

    Article  Google Scholar 

  • Mittenthal, J.E., and A.B. Baskin. 1992. General conclusions about the principles and theory of organization in organisms. In Principles of organization in organisms, ed. J.E. Mittenthal and A.B. Baskin, 385–393. Reading: Addison-Wesley.

    Google Scholar 

  • Olson, E.C. 1960. Morphology, paleontology, and evolution. In Evolution after Darwin: Vol 1 the evolution of life, its origin, history and future, ed. S. Tax, 523–545. Chicago: University of Chicago Press.

    Google Scholar 

  • Olson, E.C. 1965. Summary and comment. Systematic Zoology 14: 337–342.

    Article  Google Scholar 

  • Olson, E.C., and R.L. Miller. 1958. Morphological integration. Chicago: University of Chicago Press.

    Google Scholar 

  • Pattee, H.H. 1969. Physical conditions for primitive functional hierarchies. In Hierarchical structures, ed. L.L. Whyte, A.G. Wilson, and D. Wilson, 161–171. New York: Elsevier.

    Google Scholar 

  • Pennisi, E. 2000. Integrating the many aspects of biology. Science 419: 421.

    Google Scholar 

  • Ravasz, E., A.L. Somera, D.A. Mongru, Z.N. Oltvai, and A.-L. Barabási. 2002. Hierarchical organization of modularity in metabolic networks. Science 297: 1551–1555.

    Article  Google Scholar 

  • Riedl, R. 1978. Order in living organisms: A systems analysis of evolution. Chichester: Wiley.

    Google Scholar 

  • Ripoll, C., J. Guespin-Michel, V. Norris, and M. Thellier. 1998. Defining integrative biology. Complexity 4: 19–20.

    Article  Google Scholar 

  • Salthe, S.N. 1985. Evolving hierarchical systems: Their structure and representation. New York: Columbia University Press.

    Google Scholar 

  • Salthe, S.N. 1993. Development and evolution: Complexity and change in biology. Boston: MIT Press.

    Google Scholar 

  • Shubin, N., and C.R. Marshall. 2000. Fossils, genes and the origin of novelty. In Deep time: Paleobiology’s perspective, ed. D.H. Erwin and S.L. Wing, 324–340. Lawrence: Allen Press.

    Google Scholar 

  • Shubin, N., C. Tabin, and S. Carroll. 1997. Fossils, genes, and the evolution of animal limbs. Nature 388: 639–648.

    Article  Google Scholar 

  • Shubin, N., C. Tabin, and S. Carroll. 2009. Deep homology and the origins of evolutionary novelty. Nature 457: 818–823.

    Article  Google Scholar 

  • Stork, D.G. 1992. Preadaptation and principles of organization in organisms. In Principles of organization in organisms, ed. J.E. Mittenthal and A.B. Baskin, 205–224. Reading: Addison-Wesley.

    Google Scholar 

  • Valentine, J.W., and C.L. May. 1996. Hierarchies in biology and paleontology. Paleobiology 22: 23–33.

    Google Scholar 

  • van der Steen, W.J. 1990. Interdisciplinary integration in biology? An overview. Acta Biotheoretica 38: 23–36.

    Article  Google Scholar 

  • von Bertalanffy, L. 1952. General systems theory. New York: Braziller.

    Google Scholar 

  • Vrba, E.S., and N. Eldredge. 1984. Individuals, hierarchies and processes: Towards a more complete evolutionary theory. Paleobiology 10: 146–171.

    Google Scholar 

  • Wagner, G.P., and M.D. Laubichler. 2001. Character identification: The role of the organism. In The character concept in evolutionary biology, ed. G.P. Wagner, 143–165. San Diego: Academic.

    Google Scholar 

  • Wagner, G.P., and M.D. Laubichler. 2004. Rupert Riedl and the re-synthesis of evolutionary and developmental biology. Journal of Experimental Zoology (Molecular and Developmental Evolution) 302B: 92–102.

    Article  Google Scholar 

  • Wainwright, P.C., and S.M. Reilly. 1994. Ecological morphology: Integrative organismal biology. Chicago: University of Chicago Press.

    Google Scholar 

  • Waisbren, S.J. 1988. The importance of morphology in the evolutionary synthesis as demonstrated by the contributions of the Oxford group: Goodrich, Huxley, and De Beer. Journal of the History of Biology 21: 291–330.

    Article  Google Scholar 

  • Wake, M.H. 1990. The evolution of integration of biological systems: An evolutionary perspective through studies of cells, tissues, and organs. American Zoologist 30: 897–906.

    Google Scholar 

  • Wake, M.H. 1992. Morphology, the study of form and function, in modern evolutionary biology. In Oxford surveys in evolutionary biology, vol. 8, ed. D. Futuyma and J. Antonovics, 289–346. New York: Oxford University Press.

    Google Scholar 

  • Wake, M.H. 1998. Integrative biology in biodiversity: An approach to questions, answers, and training. In Frontiers in biology: The challenges of biodiversity, biotechnology and sustainable agriculture, ed. C.-H. Chou and K.-T. Shao, 35–40. Taipei: Academia Sinica.

    Google Scholar 

  • Wake, M.H. 2001. Integrative biology: Its promise and its perils. Biology International (France) 41: 71–74.

    Google Scholar 

  • Wake, M.H. 2003. What is “integrative biology”? Integrative and Comparative Biology 43: 239–241.

    Article  Google Scholar 

  • Wake, M.H. 2004. Integrative biology: The nexus of development, ecology and evolution. Biology International (France) 46: 1–18. (Electronic publication: http://www.iubs.org/test/bioint/46/bi46.htm)

  • Wake, M.H. 2008. Integrative biology: Science for the 21st century. BioScience 58: 349–353.

    Article  Google Scholar 

  • Wake, D.B., and A. Larson. 1987. A multidimensional analysis of an evolving lineage. Science 238: 42–48.

    Article  Google Scholar 

  • Weiss, K. 1971. The basic concept of hierarchical systems. In Hierarchically organized systems in theory and practice, ed. P. Weiss, 1–43. New York: Hafner Press.

    Google Scholar 

Download references

Acknowledgements

I thank Alan Love and his co-organizers for the invitation to participate in the stimulating symposium that spawned this essay. David Wake’s comments on the manuscript improved its focus. I relish the many discussions with students and colleagues that have shaped my ideas about research strategies, questions and problems, and what an integrative biologist is and can be. I appreciate the support of the US National Science Foundation, the Guggenheim Foundation, the Smithsonian Tropical Research Institute, the Radcliffe Institute for Advanced Study, the American Philosophical Society, and the University of California, Berkeley, for my research over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvalee H. Wake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wake, M.H. (2015). Hierarchies and Integration in Evolution and Development. In: Love, A. (eds) Conceptual Change in Biology. Boston Studies in the Philosophy and History of Science, vol 307. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9412-1_18

Download citation

Publish with us

Policies and ethics