Skip to main content

Phyla, Phylogeny, and Embryonic Body Plans

  • Chapter
  • First Online:
  • 1666 Accesses

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 307))

Abstract

This chapter deals with how three related ideas relevant to evolutionary developmental biology (Evo-devo)—phylum, phylogeny, and embryonic body plans—changed during the period after the 1981 Dahlem conference on evolution and development, both in terms of new findings that inform these ideas and how the phenomena they represent provide a platform for evolutionary change (see Valentine 2004 for a general review). My discussion is influenced by Amundson’s book The Changing Role of the Embryo in Evolutionary Thought (2005). One goal of this essay is to bring that historical account, which ends prior to the Dahlem conference, up to the present. While his title uses the word ‘embryo,’ the book does not describe the questions that evolutionary developmental biologists have asked, how they have gone about studying embryos, and why they have concentrated on particular developmental stages. First, I discuss how embryonic body plans were used in classification and phylogenetic reconstruction prior to 1981. Then I show how the utility of embryonic body plans in classification and phylogenetic reconstruction has diminished during the last 30 years, and how our view of their role as a platform for evolutionary change has been enlarged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abouheif, E. 1999. Establishing homology criteria for regulatory gene networks: Prospects and challenges. In Homology, ed. G.R. Bock and G. Cardew, 207–225. Chichester: Wiley.

    Google Scholar 

  • Aguinaldo, A.M.A., J.M. Turbeville, L.S. Linford, M.C. Rivera, J.R. Garey, R.A. Raff, and J.A. Lake. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387: 489–493.

    Article  Google Scholar 

  • Amundson, R. 2005. The changing role of the embryo in evolutionary thought. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Anderson, D.T. 1973. Embryology and phylogeny of annelids and arthropods. Oxford: Pergamon Press.

    Google Scholar 

  • Bonner, J.T. (ed.). 1982. Evolution and development. Report of the Dahlem workshop on evolution and development Berlin 1981, May 10–15. Berlin: Springer.

    Google Scholar 

  • Bowring, S.A., J.P. Grotzinger, C.E. Isachsen, A.H. Knoll, S.M. Pelechaty, and P. Kolosov. 1993. Calibrating rates of early Cambrian evolution. Science 261: 1293–1298.

    Article  Google Scholar 

  • Chatterton, B.D., and S. E. Speyer. 1997. Ontogeny. In Treatise on invertebrate paleontology Part O, Arthropoda 1. Trilobita, revised, ed. R.L. Kaesler, 173–247. Lawrence: Geological Society of America and University of Kansas Press.

    Google Scholar 

  • Chen, J.-Y., P. Oliveri, F. Gao, S.Q. Dornbos, C.-W. Li, D.T. Bottjer, and E.H. Davidson. 2002. Precambrian animal life: Probable developmental and adult cnidarian forms from Southwest China. Developmental Biology 248: 182–196.

    Article  Google Scholar 

  • Chen, J.-Y., D.J. Bottjer, P. Oliveri, S.Q. Dornbos, F. Gao, S. Ruffins, H. Chi, C.-W. Li, and E.H. Davidson. 2004. Small bilaterian fossils from 40–55 million years before the Cambrian. Science 305: 218–222.

    Article  Google Scholar 

  • Cohen, B.L., and A. Weydmann. 2005. Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the Cambrian. Organisms, Diversity and Evolution 5: 253–274.

    Article  Google Scholar 

  • Darwin, C. 1859. On the origin of species, 1st ed. London: Murray.

    Google Scholar 

  • Darwin, C. 1872. On the origin of species, 6th ed. London: Murray.

    Google Scholar 

  • Davidson, E.H. 2001. Gene regulatory systems: Development and evolution. San Diego: Academic.

    Google Scholar 

  • Davidson, E.H., and D.H. Erwin. 2006. Gene regulatory networks and the evolution of animal body plans. Science 311: 796–800.

    Article  Google Scholar 

  • Davidson, E.H., J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.-H. Yuh, T. Minokawa, et al. 2002. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Developmental Biology 246: 162–190.

    Article  Google Scholar 

  • de Beer, G.R. 1940. Embryos and ancestors. Oxford: Clarendon.

    Google Scholar 

  • Dunn, C.W., A. Hejnol, D.Q. Matus, K. Pang, W.E. Browne, S.A. Smith, E. Seaver, G.W. Rouse, M. Obst, G.D. Edgecombe, M.V. Sørensen, S.H.D. Haddock, A. Schmidt-Rhaesa, A. Okusu, R. Møbjerg Kristensen, W.C. Wheeler, M.Q. Martindale, and G. Giribet. 2008. Broad phylogenetic sampling improves resolution of the animal tree of life. Nature 452: 745–749.

    Article  Google Scholar 

  • Erwin, D.H. 2007. Disparity: Morphological pattern and developmental context. Palaeontology 50: 57–73.

    Article  Google Scholar 

  • Ettensohn, C.A. 2009. Lessons from a gene regulatory network: Echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136: 11–21.

    Article  Google Scholar 

  • Field, K., G.J. Olsen, D.J. Lane, S.J. Giovannoni, N.R. Pace, M.T. Ghiselin, E.C. Raff, and R.A. Raff. 1988. Phylogeny of the animal kingdom based on 18S rRNA sequence data. Science 239: 748–753.

    Article  Google Scholar 

  • Freeman, G. 2007. A developmental basis for the Cambrian radiation. Zoological Science 24: 113–122.

    Article  Google Scholar 

  • Freeman, G., and J.W. Lundelius. 2008. Brachiopod larvae through time. Fossils and Strata 54: 251–257.

    Google Scholar 

  • Galis, F., and J.A.J. Metz. 2001. Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. Journal of Experimental Zoology (Molecular and Developmental Evolution) 291: 195–204.

    Article  Google Scholar 

  • Gerhart, J., and M. Kirschner. 1997. Cells, embryos and evolution. Malden: Blackwell Scientific.

    Google Scholar 

  • Glaessner, M.F. 1984. The dawn of animal life: A biohistorical study. Cambridge: Cambridge University Press.

    Google Scholar 

  • Grobben, K. 1908. Die systematische einteilung des tierreiches. Verhandlungen der zoologisch-botanischen Gesellschaft in Wien 58: 491–511.

    Google Scholar 

  • Haeckel, E. 1866. Generelle morphologie der organismen, vol. 2. Berlin: Remier.

    Book  Google Scholar 

  • Haeckel, E. 1874. Die Gastraea-Theorie, die phylogenetische classification des thierreichs und die homologie der keimblätter. Jenaische Zeitschrift Naturwissensch 8: 1–55.

    Google Scholar 

  • Hennig, W. 1950. Grundzuge einer Theorie der Phylogenetischen Systematik. Berlin: Deutsche Zentralverlag.

    Google Scholar 

  • Hinman, V.F., and E.H. Davidson. 2007. Evolutionary plasticity of developmental gene regulatory network architecture. Proceedings of the National Academy of Sciences of the United States of America 104: 19404–19409.

    Article  Google Scholar 

  • Hinman, V.H., A.T. Nguyen, R.A. Cameron, and E.H. Davidson. 2003. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proceedings of the National Academy of Sciences of the United States of America 100: 13356–13361.

    Article  Google Scholar 

  • Hyman, L.H. 1940. The invertebrates: Protozoa through Ctenophora, vol. 1. New York: McGraw-Hill.

    Google Scholar 

  • Imai, K.S., M. Levine, N. Satoh, and Y. Satou. 2006. Regulatory blueprint for a chordate embryo. Science 312: 1183–1187.

    Article  Google Scholar 

  • Kalinka, A.T., K.M. Varga, D.T. Gerrard, S. Preibisch, D.L. Corcoran, J. Jarrells, U. Ohler, C.M. Bergman, and P. Tomancak. 2010. Gene expression divergence recapitulates the developmental hour glass model. Nature 468: 811–814.

    Article  Google Scholar 

  • Kenyon, C.J., J. Austin, M. Costa, D.W. Cowing, J.M. Harris, L. Honigberg, C.P. Hunter, J.N. Maloof, M.M. Muller-Immerglück, S.J. Salser, D.A. Waring, B.B. Wang, and L.A. Wrischnik. 1997. The dance of the Hox genes: Patterning the anteroposterior body axis of Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology 62: 293–305.

    Article  Google Scholar 

  • Kühn, A. 1914. Entwicklungsgeschichte und verwandschaftsbeziehungen der Hydrozoen I. Die Hydroiden, ergebnis. Fortschritte der Zoologie 4: 1–284.

    Google Scholar 

  • Kumano, G., and H. Nishida. 2009. Patterning of an ascidian embryo along the anterior-posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Developmental Biology 331: 78–88.

    Article  Google Scholar 

  • Lankester, E.R. 1873. On the primitive cell layers of the embryo as the basis of genealogical classification of animals. Annals and Magazine of Natural History 11: 321–328.

    Article  Google Scholar 

  • Lemaire, P. 2006. How many ways to make a chordate? Science 312: 1145–1146.

    Article  Google Scholar 

  • Li, C.-W., J.-Y. Chen, and T.-E. Hua. 1998. Precambrian sponges with cellular structures. Science 279: 879–882.

    Article  Google Scholar 

  • Martindale, M.Q., and A. Hejnol. 2009. A developmental perspective: Changes in the position of the blastopore during bilaterian evolution. Developmental Cell 17: 162–174.

    Article  Google Scholar 

  • McCauley, B.S., E.P. Weideman, and V.F. Hinman. 2010. A conserved gene regulatory subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Developmental Biology 340: 200–208.

    Article  Google Scholar 

  • Müller, F. 1864. Für Darwin. Leipzig: Engelmann Verlag [English Trans (1869) Facts and arguments for Darwin. London: Murray].

    Google Scholar 

  • Müller, K.J., and D. Walossek. 1986. Arthropod larvae from the Upper Cambrian of Sweden. Transactions of the Royal Society of Edinburgh: Earth and Environmental Science 77: 157–179.

    Article  Google Scholar 

  • Nielsen, C. 2009. How did indirect development with planktotrophic larvae evolve? Biological Bulletin 216: 203–215.

    Google Scholar 

  • Nishida, H. 1994. Localization of determinants for formation of the anterior-posterior axis in eggs of the ascidian Halocynthia roretzi. Development 120: 3093–3104.

    Google Scholar 

  • Nusslein-Volhard, C., and E. Wieschaus. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.

    Article  Google Scholar 

  • Olsen, E.N. 2006. Gene regulatory networks in the evolution and development of the heart. Science 313: 1922–1927.

    Article  Google Scholar 

  • Phillippe, H., A. Cheneuil, and A. Adoutte. 1994. Can the Cambrian explosion be inferred through molecular phylogeny. Development 121(Suppl): 15–24.

    Google Scholar 

  • Prodon, F., L. Yamada, M. Shirae-Kurabayashi, M. Nakamura, Y. Sasakura, and Y. Sasakura. 2007. Postplasmic/PEM RNAs: A class of localized mRNAs with multiple roles in cell polarity and development in ascidian embryos. Developmental Dynamics 236: 1698–1715.

    Article  Google Scholar 

  • Raff, R.A. 1996. The shape of life. Chicago: University of Chicago Press.

    Google Scholar 

  • Raff, R.A. 2008. Origins of the other metazoan body plans: The evolution of larval forms. Philosophical Transactions of the Royal Society, B: Biological Sciences 363: 1473–1479.

    Article  Google Scholar 

  • Richardson, M.K., J. Hanken, M.L. Gooneratne, C. Pieau, A. Raymond, L. Selwood, and G.M. Wright. 1997. There is no highly conserved embryonic stage in vertebrates: Implications for current theories of development and evolution. Anatomy and Embryology 196: 91–106.

    Article  Google Scholar 

  • Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis. Advances in Insect Physiology 12: 125–238.

    Article  Google Scholar 

  • Sander, K. 1983. The evolution of patterning mechanisms: Gleanings from insect embryogenesis and spermatogenesis. In Development and evolution, ed. B.C. Goodwin, N. Holder, and C.C. Wylie, 137–159. Cambridge: Cambridge University Press.

    Google Scholar 

  • Seidel, F. 1960. Körpergrundgestalt und keimstructur-eine eröterung über die grundgestalt der vergleichenden und experimentellen embryologie under deren gültigkeit bei phylogenetischen überlegungen. Zoologischer Anzeiger 164: 245–305.

    Google Scholar 

  • Slack, J.M. 1992. From egg to embryo: Regional specification in early development. Cambridge: Cambridge University Press.

    Google Scholar 

  • Slack, J.M., P.W. Holland, and C.F. Graham. 1993. The zootype and the phylotypic stage. Nature 361: 490–492.

    Article  Google Scholar 

  • Valentine, J.W. 2004. On the origin of phyla. Chicago: University of Chicago Press.

    Google Scholar 

  • Wada, H., and N. Satoh. 1994. Phylogenetic relationships among extant classes of echinoderms as inferred from sequences of 18s rDNA, coincide with relationships deduced from the fossil record. Journal of Molecular Evolution 38: 41–49.

    Article  Google Scholar 

  • Webster, M. 2007. A Cambrian peak of morphological variation within trilobite species. Science 317: 499–502.

    Article  Google Scholar 

  • Wei, Z., J. Yaguchi, R.C. Angerer, and L.M. Angerer. 2009. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 136: 1179–1189.

    Article  Google Scholar 

  • Whitman, C.O. 1878. The embryology of Clepsine. Quarterly Journal of Microscopical Science 18: 215–315.

    Google Scholar 

  • Williams, A., S.J. Carlson, C.H. Brunton, L.E. Holmer, and L. Popov. 1996. A supraordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society, B: Biological Sciences 351: 1171–1193.

    Article  Google Scholar 

  • Wilson, E.B. 1899. Cell-lineage and ancestral reminiscence. Biological Lectures 1898: 21–42. Boston: Ginn and Co.

    Google Scholar 

  • Wilson, E.B. 1925. The cell in development and heredity, 3rd ed. New York: Macmillan.

    Google Scholar 

  • Woodger, J.H. 1929. Biological principles. London: Routledge and Kegan Paul.

    Google Scholar 

  • Yaguchi, S., J. Yaguchi, R.C. Angerer, and L.M. Angerer. 2008. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Developmental Cell 14: 97–107.

    Article  Google Scholar 

Download references

Acknowledgements

I want to thank Judith Lundelius and Alan Love for editing the manuscript, and Marianna Grenadier for preparing Figs. 10.1 and 10.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Freeman, G. (2015). Phyla, Phylogeny, and Embryonic Body Plans. In: Love, A. (eds) Conceptual Change in Biology. Boston Studies in the Philosophy and History of Science, vol 307. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9412-1_10

Download citation

Publish with us

Policies and ethics