Skip to main content

Light Emitting Diodes

  • Chapter
  • First Online:
The Current Trends of Optics and Photonics

Abstract

In this chapter, the basics of the light emitting diodes are reviewed. Since its invention in the 20th century, the light emitting diode has evolved into a major life-changer for human being. Most of the focuses have been on the family of GaN-based materials in the past two decades. While achieving impressive progress, important issues such as efficiency droop, light extraction, and device packaging are still the main targets of research. Among various designs to battle the efficiency droop, one of the techniques is to re-design the epitaxial structure of the devices including graded quantum well and novel electron blocking layers. Another choice is the nano-pillar sapphire substrate. These techniques are easier than those requiring substrate change (such as non-polar GaN substrates) and provide significant improvement. On the light extraction issue, micro/nano structures are often applied to enhance the output of the emitted photons. Other than the material and device sides, the packaging technology of the light emitting diode is one key factor that was often overlooked. This factor can affect the final output power and the cost structure as well. We implement novel materials such as quantum dots and nano-particles to enhance the device performance. The novel design of traditional phosphor layers is also proven to be effective. All these improvements can be crucial towards to commercialization of the light emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Lossev, Behavior of contact detectors; the effect of temperature on the generating contact. Telegrafia I Telefonia Bez Provodov 18, 45–62 (1923). (In Russian)

    Google Scholar 

  2. V. Lossev, Oscillating crystals. Wireless World Radio Rev. 271, 93–96 (1924)

    Google Scholar 

  3. V. Lossev, Luminous carborundum detector and detection effect and oscillations with crystals. Phil. Mag. 5, 1024–1044 (1928)

    Google Scholar 

  4. E.E. Loebner, Subhistories of the light emitting diode. IEEE Trans. Electron Dev. 23, 675–699 (1976)

    Google Scholar 

  5. N. Holonyak, Lemelson-MIT Prize Winner. Lemenson-MIT Program, 13 Aug 2007 (2004)

    Google Scholar 

  6. N. Holonyak Jr, S.F. Bevacqua, Coherent (visable) light emission from Ga(As1−x Px) junctions. Appl. Phys. Lett. 4, 82–83 (1962)

    ADS  Google Scholar 

  7. N. Jr HolonyakJr, D.C. Jillson, S.F. Bevacqua, Halogen vapor transport and growth of epitaxial layers of intermetallic compounds and compound mixtures, in Metallurgy of Semiconductor Materials, vol. 15, ed. by J.B. Schroeder (Wiley, New York, 1961), pp. 49–59

    Google Scholar 

  8. N. Holonyak, Jr., Private Communication, Sept 2002

    Google Scholar 

  9. N. Holonyak Jr, S.F. Bevacqua, Coherent (visible) light emission from Ga(AsP) junctions. Appl. Phys. Lett. 1, 82–83 (1962)

    ADS  Google Scholar 

  10. E. Fred Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2003), pp. 8–9

    Google Scholar 

  11. T.S. Perry, M. George Craford [biography]. IEEE Spectr. 32, 52–55 (1995)

    MathSciNet  Google Scholar 

  12. B. Biography–Holonyak, D. Craford, Technology Administration. Retrieved 30 May 2007

    Google Scholar 

  13. T.P. Pearsall, B.I. Miller, R.J. Capik, K.J. Bachmann, Efficient, lattice-matched, double heterostructure LEDs at 1.1 mm from GaxIn1−xAsyP1-y by liquid-phase epitaxy. Appl. Phys. Lett. 28, 499 (1976)

    ADS  Google Scholar 

  14. M. Ikeda, K. Nakano, Y. Mori, K. Kaneko, N. Watanabe, Mocvd growth of algainp at atmospheric-pressure using triethylmetals and phosphine. J. Cryst. Growth 77, 380–385 (1986)

    ADS  Google Scholar 

  15. M. Ikeda, Y. Mori, H. Sato, K. Kaneko, N. Watanabe, Room-temperature continuous-wave operation of an algainp double heterostructure laser grown by atmospheric-pressure metalorganic chemical vapor-deposition. Appl. Phys. Lett. 47, 1027–1028 (1985)

    ADS  Google Scholar 

  16. K.H. Huang, J.G. Yu, C.P. Kuo, R.M. Fletcher, T.D. Osentowski, L.J. Stinson, M.G. Craford, A.S.H. Liao, Twofold efficiency improvement in high-performance algainp light-emitting-diodes in the 555–620 nm spectral region using a thick gap window layer. Appl. Phys. Lett. 61, 1045–1047 (1992)

    ADS  Google Scholar 

  17. R.M. Fletcher, C.P. Kuo, T.D. Osentowski, K.H. Huang, M.G. Craford, V.M. Robbins, The growth and properties of high-performance algalnp emitters using a lattice mismatched gap window layer. J. Electron. Mater. 20, 1125–1130 (1991)

    ADS  Google Scholar 

  18. H. Amano, T. Asahi, I. Akasaki, Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 29, L205–L206 (1990)

    ADS  Google Scholar 

  19. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor-phase epitaxial-growth of a high-quality GaN film using an AIN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986)

    ADS  Google Scholar 

  20. I. Akasaki, H. Amano, K. Hiramatsu, N. Sawaki, High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE, in Gallium Arsenide and Related Compounds 1987. Proceedings of 14th International Symposium, pp. 633–636 (1988)

    Google Scholar 

  21. H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, P-type conduction in Mg-doped GaN treated with low-energy electron-beam irradiation (LEEBI). Jpn J. Appl. Phys. Part 2-Lett. 28, L2112–L2114 (1989)

    Google Scholar 

  22. S. Nakamura, M. Senoh, T. Mukai, Highly p-typed Mg-doped GaN films grown with GaN buffer layers. Jpn J. Appl. Phys. Part 2-Lett. 30, L1708–L1711 (1991)

    Google Scholar 

  23. S. Nakamura, T. Mukai, M. Senoh, High-power GaN p-n-junction blue-light-emitting diodes. Jpn J. Appl. Phys. Part 2-Lett. 30, L1998–L2001 (1991)

    Google Scholar 

  24. S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Thermal annealing effects on p-type Mg-doped GaN films. Jpn J. Appl. Phys. 31, L139–4215 (1992)

    Google Scholar 

  25. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Dis. Technol. 3, 160–175 (2007)

    ADS  Google Scholar 

  26. R. V. Steele, The story of a new light source. Nat. Photonics 1, 25-26 (2007)

    Google Scholar 

  27. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, T. Mukai, Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip. Japan. J. Appl. Phys. Part 2-Lett. 41, L371–L373 (2002)

    Google Scholar 

  28. E.F. Schubert, Light Emitting Diodes, 1st edn. (Cambridge University Press, Cambridge, England, 2003)

    Google Scholar 

  29. A. Sakai, H. Sunakawa, A. Usui, Defect structure in selectively grown GaN films with low threading dislocation density. Appl. Phys. Lett. 71, 2259–2261 (1997)

    ADS  Google Scholar 

  30. O.H. Nam, M.D. Bremser, T.S. Zheleva, R.F. Davis, Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 71, 2638–2640 (1997)

    ADS  Google Scholar 

  31. D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, S.Y. Huang, C.F. Lin, R.H. Horng, Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template. Appl. Phys. Lett. 89 (2006)

    Google Scholar 

  32. D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, R.H. Horng, Y.S. Yu, M.H. Pan, Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes. J. Electrochem. Soc. 153, G765–G770 (2006)

    Google Scholar 

  33. A. Xing, M. Davanco, D.J. Blumenthal, E.L. Hu, Fabrication of InP-based two-dimensional photonic crystal membrane. J. Vac. Sci. Technol. B 22, 70–73 (2004)

    Google Scholar 

  34. H.W. Huang, C.H. Lin, C.C. Yu, C.H. Chiu, C.F. Lai, H.C. Kuo, K.M. Leung, T.C. Lu, S.C. Wang, B.D. Lee, Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography. Nanotechnology 19, 18530 (2008)

    Google Scholar 

  35. S. Li, A. Waag, GaN based nanorods for solid state lighting. J. Appl. Phys. 111, 071101 (2012)

    ADS  Google Scholar 

  36. Y.L. Li, R. Huang, Y.H. Lai, Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Appl. Phys. Lett. 91, 181113 (2007)

    ADS  Google Scholar 

  37. M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007)

    ADS  Google Scholar 

  38. T.S. Zheleva, O.H. Nam, W.M. Ashmawi, J.D. Griffin, R.F. Davis, Lateral epitaxy and dislocation density reduction in selectively grown GaN structures. J. Cryst. Growth 222, 706–718 (2001)

    ADS  Google Scholar 

  39. A. Usui, H. Sunakawa, A. Sakai, A.A. Yamaguchi, Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Japan. J. Appl. Phys. Part 2-Lett. 36, L899–L902 (1997)

    Google Scholar 

  40. C.H. Chiu, M.H. Lo, T.C. Lu, P. Yu, H.W. Huang, H.C. Kuo, S.C. Wang, Nano-processing techniques applied in GaN-Based light-emitting devices with self-assembly Ni nano-masks. J. Lightwave Technol. 26, 1445–1454 (2008)

    ADS  Google Scholar 

  41. Y.J. Lee, H.C. Kuo, T.C. Lu, S.C. Wang, High light-extraction GaN-based vertical LEDs with double diffuse surfaces. IEEE J. Quantum Elect. 42, 1196–1201 (2006)

    ADS  Google Scholar 

  42. C.H. Chiu, H.H. Yen, C.L. Chao, Z.Y. Li, P. Yu, H.C. Kuo, T.C. Lu, S.C. Wang, K.M. Lau, S.J. Cheng, Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO(2) nanorod-array patterned sapphire template. Appl. Phys. Lett. 93, 081108 (2008)

    ADS  Google Scholar 

  43. Z.H. Feng, Y.D. Qi, Z.D. Lu, K.M. Lau, GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy. J. Cryst. Growth 272, 327–332 (2004)

    ADS  Google Scholar 

  44. K. Kusakabe, A. Kikuchi, K. Kishino, Characterization of overgrown GaN layers on nano-columns grown by RF-molecular beam epitaxy. Japan. J. Appl. Phys. Part 2-Lett. 40, L192–L194 (2001)

    Google Scholar 

  45. E.H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S.K. Jeon, J.S. Park, Air-voids embedded high efficiency InGaN-light emitting diode. Appl. Phys. Lett. 93, 191103 (2008)

    ADS  Google Scholar 

  46. M.H. Lo, Y.J. Cheng, H.C. Kuo, S.C. Wang, Enhanced electron-hole plasma stimulated emission in optically pumped gallium nitride nanopillars. Appl. Phys. Lett. 98, 121101 (2011)

    ADS  Google Scholar 

  47. P. Frajtag, J.P. Samberg, N.A. El-Masry, N. Nepal, S.M. Bedair, Embedded voids formation by overgrowth on GaN nanowires for high-quality GaN films. J. Cryst. Growth 322, 27–32 (2011)

    ADS  Google Scholar 

  48. C.H. Chiu, H.H. Yen, C.L. Chao, Z.Y. Li, P. Yu, H.C. Kuo, T.C. Lu, S.C. Wang, K.M. Lau, S.J. Cheng, Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO(2) nanorod-array patterned sapphire template. Appl. Phys. Lett. 93, 081108 (2008)

    ADS  Google Scholar 

  49. P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, Y. Gogotsi, GaN nanoindentation: a micro-Raman spectroscopy study of local strain fields. J. Appl. Phys. 96, 2853–2856 (2004)

    ADS  Google Scholar 

  50. X.H. Wu, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U.K. Mishra, S.P. DenBaars, J.S. Speck, Dislocation generation in GaN heteroepitaxy. J. Cryst. Growth 189, 231–243 (1998)

    ADS  Google Scholar 

  51. C.H. Yen, W.C. Lai, Y.Y. Yang, C.K. Wang, T.K. Ko, S.J. Hon, S.J. Chang, GaN-based light-emitting diode with sputtered AlN nucleation layer. IEEE Photonics Tech. Lett. 24, 294–296 (2012)

    ADS  Google Scholar 

  52. D. Hanser, E.A. Preble, T. Clites, T. Stephenson, R. Jacobs, T. Johnson, T. Paskova, K.R. Evans, CS Mantech Conference, Tampa, Florida, USA, pp. 18–21 (2009)

    Google Scholar 

  53. J.K. Sheu, J.M. Tsai, S.C. Shei, W.C. Lai, T.C. Wen, C.H. Kou, Y.K. Su, S.J. Chang, G.C. Chi, Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer. IEEE Electron Device Lett. 22, 460–462 (2001)

    ADS  Google Scholar 

  54. C. Liu, B. Mensching, M. Zeitler, K. Volz, B. Rauschenbach, Ion implantation in GaN at liquid-nitrogen temperature: structural characteristics and amorphization. Phys. Rev. B 57, 2530–2535 (1998)

    ADS  Google Scholar 

  55. J.K. Sheu, S.J. Tu, Y.H. Yeh, M.L. Lee, W.C. Lai, Gallium nitride-based light-emitting diodes with embedded air voids grown on Ar-implanted AlN/sapphire substrate. Appl. Phys. Lett. 101, 151103 (2012)

    ADS  Google Scholar 

  56. J.K. Sheu, M.L. Lee, C.J. Tun, C.J. Kao, L.S. Yeh, S.J. Chang, G.C. Chi, Characterization of Si implants in p-type GaN. IEEE J. Sel. Top. Quantum Electron. 8, 767–772 (2002)

    Google Scholar 

  57. S.-J. Tu, M.-L. Lee, Y.-H. Yeh, F.-W. Huang, P.-C. Chen, W.-C. Lai, C.-W. Chen, G.C. Chi, J.-K. Sheu, Improved output power of InGaN LEDs by lateral overgrowth on Si-implanted n-GaN surface to form air gaps. IEEE J. Quantum Electron. 48, 1004–1009 (2012)

    ADS  Google Scholar 

  58. S. Grzanka, G. Franssen, G. Targowski, K. Krowicki, T. Suski, R. Czernecki, P. Perlin, M. Leszczynski, Role of the electron blocking layer in the low-temperature collapse of electroluminescence in nitride light-emitting diodes. Appl. Phys. Lett. 90, 103507 (2007)

    ADS  Google Scholar 

  59. K. Iga, H. Uenohara, F. Koyama, Electron reflectance of multiquantum barrier (MQB). Electron. Lett. 22, 1008–1010 (1986)

    ADS  Google Scholar 

  60. S.N. Lee, S.Y. Cho, H.Y. Ryu, J.K. Son, H.S. Paek, T. Sakong, T. Jang, K.K. Choi, K.H. Ha, M.H. Yang, O.H. Nam, Y. Park, E. Yoon, High-power GaN-based blue-violet laser diodes with AlGaN/GaN multiquantum barriers. Appl. Phys. Lett. 88, 111101 (2006)

    ADS  Google Scholar 

  61. N. Tzer-En, W. Jen-Cheng, S. Hui-Tang, W. Ya-Fen, Effect of multiquantum barriers on performance of InGaN/GaN multiple-quantum-well light-emitting diodes. J. Appl. Phys. 102, 033101–033107 (2007)

    Google Scholar 

  62. H. Hirayama, Y. Tsukada, T. Maeda, N. Kamata, Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010)

    ADS  Google Scholar 

  63. C.S. Chang, Y.K. Su, S.J. Chang, P.T. Chang, Y.R. Wu, K.H. Huang, T.P. Chen, High-brightness AlGaInP 573-nm light-emitting diode with a chirped multiquantum barrier. IEEE J. Quantum Electron. 34, 77–83 (1998)

    ADS  Google Scholar 

  64. C.S. Chang, S.J. Chang, Y.K. Su, C.T. Lee, Y.C. Lin, W.C. Lai, S.C. Shei, J.C. Ke, H.M. Lo, Nitride-based LEDs with textured side walls. IEEE Photonics Tech. Lett. 16, 750–752 (2004)

    ADS  Google Scholar 

  65. S.J. Chang, C.H. Chen, P.C. Chang, Y.K. Su, P.C. Chen, Y.D. Jhou, H. Hung, S.M. Wang, B.R. Huang, Nitride-based LEDs with p-InGaN capping layer. IEEE Trans. Electron Device 50, 2567–2570 (2003)

    ADS  Google Scholar 

  66. Y.-Y. Lin, R.W. Chuang, S.-J. Chang, S. Li, Z.-Y. Jiao, T. Ko, S.J. Hon, C.H. Liu, GaN-based LEDs with a chirped multiquantum barrier structure. Photonics Tech. Lett., IEEE. 24(18), 1600–1602 (Sep 15, 2012)

    Google Scholar 

  67. H. Fujii, K. Endo, H. Hotta, improvement of multiquantum-barrier effect by layer-thickness modulation. Appl. Phys. Lett. 64, 3479–3481 (1994)

    ADS  Google Scholar 

  68. S.J. Chang, S.F. Yu, R.M. Lin, S. Li, T.H. Chiang, S.P. Chang, C.H. Chen, InGaN-based light-emitting diodes with an AlGaN staircase electron blocking layer. IEEE Photonics Tech. Lett. 24, 1737–1740 (2012)

    ADS  Google Scholar 

  69. C.L. Reynolds Jr, A. Patel, Tunneling entity in different injection regimes of InGaN light emitting diodes. J. Appl. Phys. 103, 086102 (2008)

    ADS  Google Scholar 

  70. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)

    ADS  Google Scholar 

  71. F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, 10024–10027 (1997)

    ADS  Google Scholar 

  72. S.J. Chang, C.S. Chang, Y.K. Su, R.W. Chuang, W.C. Lai, C.H. Kuo, Y.P. Hsu, Y.C. Lin, S.C. Shei, H.M. Lo, J.C. Ke, J.K. Sheu, Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact. IEEE Photonics Tech. Lett. 16, 1002–1004 (2004)

    ADS  Google Scholar 

  73. E. Fred Schubert, Light-Emitting Diodes, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  74. Y.K. Su, S.J. Chang, C.H. Chen, J.F. Chen, G.C. Chi, J.K. Sheu, W.C. Lai, J.M. Tsai, GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes. IEEE Sens. J. 2, 366–371 (2002)

    Google Scholar 

  75. J.F. Lin, M.C. Wu, M.J. Jou, C.M. Chang, B.J. Lee, Y.T. Tsai, Highly reliable operation of indium tin oxide AlGaInP orange light-emitting-diodes. Electron. Lett. 30, 1793–1794 (1994)

    Google Scholar 

  76. C.L. Chua, R.L. Thornton, D.W. Treat, V.K. Yang, C.C. Dunnrowicz, Indium tin oxide transparent electrodes for broad-area top-emitting vertical-cavity lasers fabricated using a single lithography step. IEEE Photonics Tech. Lett. 9, 551–553 (1997)

    ADS  Google Scholar 

  77. C.L. Chua, R.L. Thornton, D.W. Treat, V.K. Yang, C.C. Dunnrowicz, Indium tin oxide transparent electrodes for broad-area top-emitting vertical-cavity lasers fabricated using a single lithography step. IEEE Photonics Tech. Lett. 9, 551–553 (1997)

    ADS  Google Scholar 

  78. Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang, S.C. Shei, S.J. Hsu, C.H. Liu, U.H. Liaw, S.C. Chen, B.R. Huang, Nitride-based light-emitting diodes with Ni/ITO p-type ohmic contacts. IEEE Photonics Tech. Lett. 14, 1668–1670 (2002)

    ADS  Google Scholar 

  79. T. Margalith, O. Buchinsky, D.A. Cohen, A.C. Abare, M. Hansen, S.P. DenBaars, L.A. Coldren, Indium tin oxide contacts to gallium nitride optoelectronic devices. Appl. Phys. Lett. 74, 3930–3932 (1999)

    ADS  Google Scholar 

  80. S.R. Jeon, Y.H. Song, H.J. Jang, G.M. Yang, S.W. Hwang, S.J. Son, Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions. Appl. Phys. Lett. 78, 3265–3267 (2001)

    ADS  Google Scholar 

  81. C.S. Chang, S.J. Chang, Y.K. Su, Y.C. Lin, Y.P. Hsu, S.C. Shei, S.C. Chen, C.H. Liu, U.H. Liaw, InGaN/GaN light-emitting diodes with ITO p-contact layers prepared by RF sputtering. Semicond. Sci. Tech. 18, L21–L23 (2003)

    ADS  Google Scholar 

  82. S.J. Chang, L.W. Wu, Y.K. Su, Y.P. Hsu, W.C. Lai, J.A. Tsai, J.K. Sheu, C.T. Lee, Nitride-based LEDs with 800 °C grown p-AllnGaN-GaN double-cap layers. IEEE Photonics Tech. Lett. 16, 1447–1449 (2004)

    ADS  Google Scholar 

  83. T. Borzenko, M. Tormen, G. Schmidt, L.W. Molenkamp, H. Janssen, Polymer bonding process for nanolithography. Appl. Phys. Lett. 79, 2246–2248 (2001)

    ADS  Google Scholar 

  84. S.J. Chang, C.F. Shen, W.S. Chen, C.T. Kuo, T.K. Ko, S.C. Shei, J.K. Sheu, Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography. Appl. Phys. Lett. 91 (2007)

    Google Scholar 

  85. S.J. Chang, C.S. Chang, Y.K. Su, C.T. Lee, W.S. Chen, C.F. Shen, Y.P. Hsu, S.C. Shei, H.M. Lo, Nitride-based flip-chip ITO LEDs. IEEE Trans. Adv. Packag. 28, 273–277 (2005)

    Google Scholar 

  86. J.R. Lee, S.I. Na, J.H. Jeong, S.N. Lee, J.S. Jang, S.H. Lee, J.J. Jung, J.O. Song, T.Y. Seong, S.J. Park, Low resistance and high reflectance Pt/Rh contacts to p-type GaN for GaN-based flip chip light-emitting diodes. J. Electrochem. Soc. 152, G92–G94 (2005)

    Google Scholar 

  87. J. Song, D.S. Leem, J.S. Kwak, O.H. Nam, Y. Park, T.Y. Seong, Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes. IEEE Photonics Tech. Lett. 16, 1450–1452 (2004)

    ADS  Google Scholar 

  88. S.J. Chang, W.S. Chen, Y.C. Lin, C.S. Chang, T.K. Ko, Y.P. Hsu, C.F. Shen, J.M. Tsai, S.C. Shei, Nitride-based flip-chip LEDs with transparent ohmic contacts and reflective mirrors. IEEE Trans. Adv. Packag. 29, 403–408 (2006)

    Google Scholar 

  89. S.J. Chang, W.S. Chen, S.C. Shei, T.K. Ko, C.F. Shen, Y.P. Hsu, C.S. Chang, J.M. Tsai, W.C. Lai, A.J. Lin, Highly reliable high-brightness GaN-based flip chip LEDs. IEEE Trans. Adv. Packag. 30, 752–757 (2007)

    Google Scholar 

  90. C.E. Lee, H.C. Kuo, Y.C. Lee, M.R. Tsai, T.C. Lu, S.C. Wang, C.T. Kuo, Luminance enhancement of flip-chip light-emitting diodes by geometric sapphire shaping structure. IEEE Photonics Tech. Lett. 20, 184–186 (2008)

    ADS  Google Scholar 

  91. D.-S. Han, J.-Y. Kim, S.-I. Na, S.-H. Kim, K.-D. Lee, B. Kim, S.-J. Park, Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side-surface of sapphire substrate. IEEE Photonics Tech. Lett. 18, 1406–1408 (2006)

    ADS  Google Scholar 

  92. C.F. Shen, S.J. Chang, W.S. Chen, T.K. Ko, C.T. Kuo, S.C. Shei, Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate. IEEE Photonics Tech. Lett. 19, 780–782 (2007)

    ADS  Google Scholar 

  93. S.-H. Huang, R.-H. Horng, K.-S. Wen, Y.-F. Lin, K.-W. Yen, D.-S. Wuu, Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing. IEEE Photonics Tech. Lett. 18, 2623–2625 (2006)

    ADS  Google Scholar 

  94. S.-J. Chang, W.S. Chen, S.C. Shei, C.T. Kuo, T.K. Ko, C.F. Shen, J.M. Tsai, W.-C. Lai, J.-K. Sheu, A.J. Lin, High-brightness InGaN–GaN power flip-chip LEDs. IEEE J. Lightwave Technol. 27, 1985–1989 (2009)

    ADS  Google Scholar 

  95. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, High output power InGaN ultraviolet light plus emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy. Physica Status Solidi a-Appl. Res. 188, 121–125 (2001)

    ADS  Google Scholar 

  96. W.K. Wang, D.S. Wuu, S.H. Lin, P. Han, R.H. Horng, T.C. Hsu, D.T.C. Huo, M.J. Jou, Y.H. Yu, A.K. Lin, Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates. IEEE J. Quantum Electron. 41, 1403–1409 (2005)

    ADS  Google Scholar 

  97. Y.J. Lee, J.M. Hwang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates. IEEE Photonics Tech. Lett. 18, 1152–1154 (2006)

    ADS  Google Scholar 

  98. S.J. Chang, Y.C. Lin, Y.K. Su, C.S. Chang, T.C. Wen, S.C. Shei, J.C. Ke, C.W. Kuo, S.C. Chen, C.H. Liu, Nitride-based LEDs fabricated on patterned sapphire substrates. Solid-State Electron. 47, 1539–1542 (2003)

    ADS  Google Scholar 

  99. S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Prospects for LED lighting. Nat. Photonics 3, 179–181 (2009)

    ADS  Google Scholar 

  100. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1274–1278 (2005)

    ADS  Google Scholar 

  101. K.J. Chen, H.C. Chen, M.H. Shih, C.H. Wang, M.Y. Kuo, Y.C. Yang, C.C. Lin, H.C. Kuo, The influence of the thermal effect on CdSe/ZnS quantum dots in light-emitting diodes. IEEE J. Lightwave Technol. 30, 2256–2261 (2012)

    ADS  Google Scholar 

  102. H.C. Chen, K.J. Chen, C.C. Lin, C.H. Wang, C.C. Yeh, H.H. Tsai, M.H. Shih, H.C. Kuo, Improvement of lumen efficiency in white light-emitting diodes with air-gap embedded package. Microelectron. Reliab. 52, 933–936 (2012)

    Google Scholar 

  103. H.T. Huang, Y.P. Huang, C.C. Tsai, Planar lighting system using array of blue LEDs to excite yellow remote phosphor film. J. Disp. Technol. 7, 44–51 (2011)

    ADS  Google Scholar 

  104. H.C. Chen, K.J. Chen, C.H. Wang, C.C. Lin, C.C. Yeh, H.H. Tsai, M.H. Shih, H.C. Kuo, T.C. Lu, A novel randomly textured phosphor structure for highly efficient white light-emitting diodes. Nanoscale Res. Lett. 7, 1–5 (2012)

    MATH  Google Scholar 

  105. R.M. Farrell, E.C. Young, F. Wu, S.P. DenBaars, J.S. Speck, Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices. Semicond. Sci. Tech. 27 (2012)

    Google Scholar 

  106. H. Zhao, G. Liu, J. Zhang, J.D. Poplawsky, V. Dierolf, N. Tansu, Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 19, A991–A1007 (2011)

    ADS  Google Scholar 

  107. J. Zhang, N. Tansu, Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes. J. Appl. Phys. 110, 113110 (2011)

    ADS  Google Scholar 

  108. H. Zhao, G. Liu, R.A. Arif, N. Tansu, Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electron. 54, 1119–1124 (2010)

    ADS  Google Scholar 

  109. C.H. Wang, S.P. Chang, P.H. Ku, J.C. Li, Y.P. Lan, C.C. Lin, H.C. Yang, H.C. Kuo, T.C. Lu, S.C. Wang, C.Y. Chang, Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers. Appl. Phys. Lett. 99, 171106 (2011)

    ADS  Google Scholar 

  110. Y.-K. Ee, J.M. Biser, W. Cao, H.M. Chan, R.P. Vinci, N. Tansu, Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode. IEEE J. Sel. Top. Quantum Electron. 15, 1066–1072 (2009)

    Google Scholar 

  111. Y.J. Lee, C.H. Chiu, C.C. Ke, P.C. Lin, T.C. Lu, H.C. Kuo, S.C. Wang, Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate. IEEE J. Sel. Top. Quantum Electron. 15, 1137–1143 (2009)

    Google Scholar 

  112. Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H.M. Chan, R.P. Vinci, N. Tansu, Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire. J. Cryst. Growth 312, 1311–1315 (2010)

    ADS  Google Scholar 

  113. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl. Phys. Lett. 98, 151102 (2011)

    ADS  Google Scholar 

  114. W.B. Im, N. George, J. Kurzman, S. Brinkley, A. Mikhailovsky, J. Hu, B.F. Chmelka, S.P. DenBaars, R. Seshadri, Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting. Adv. Mater. 23, 2300 (2011)

    Google Scholar 

  115. S.E. Brinkley, N. Pfaff, K.A. Denault, Z. Zhang, H.T. Hintzen, R. Seshadri, S. Nakamura, S.P. DenBaars, Robust thermal performance of Sr2Si5N8:Eu2+: an efficient red emitting phosphor for light emitting diode based white lighting. Appl. Phys. Lett. 99, 241106 (2011)

    ADS  Google Scholar 

  116. Y. Zhang, L. Wu, M. Ji, B. Wang, Y. Kong, J. Xu, Structure and photoluminescence properties of KSr4(BO3)(3):Eu3+ red-emitting phosphor. Opt. Mater. Express 2, 92–102 (2012)

    Google Scholar 

  117. H. Li, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, H.S. Lee, S.S. Yi, Tunable photoluminescence properties of Eu(II)- and Sm(III)-coactivated Ca9Y(PO4)(7) and energy transfer between Eu(II) and Sm(III). Opt. Mater. Express 2, 443–451 (2012)

    Google Scholar 

  118. Y. Shuai, N.T. Tran, F.G. Shi, Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters. IEEE Photonics Tech. Lett. 23, 552–554 (2011)

    ADS  Google Scholar 

  119. J.K. Kim, H. Luo, E.F. Schubert, J.H. Cho, C.S. Sone, Y.J. Park, Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. J. Appl. Phys. Part 2-Lett. Express Lett. 44, L649–L651 (2005)

    Google Scholar 

  120. M.T. Lin, S.P. Ying, M.Y. Lin, K.Y. Tai, S.C. Tai, C.H. Liu, J.C. Chen, C.C. Sun, Ring Remote phosphor structure for phosphor-converted white LEDs. IEEE Photonics Tech. Lett. 22, 574–576 (2010)

    ADS  Google Scholar 

  121. H.T. Huang, C.C. Tsai, Y.P. Huang, A direct-view backlight with UV excited trichromatic phosphor conversion film. J. Dis. Technol. 6, 128–134 (2010)

    ADS  Google Scholar 

  122. H.C. Kuo, C.W. Hung, H.C. Chen, K.J. Chen, C.H. Wang, C.W. Sher, C.C. Yeh, C.C. Lin, C.H. Chen, Y.J. Cheng, Patterned structure of remote phosphor for phosphor-converted white LEDs. Opt. Express 19, A930–A936 (2011)

    ADS  Google Scholar 

  123. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Dis. Technol. 3, 160–175 (2007)

    ADS  Google Scholar 

  124. C. Sommer, J.R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, F.P. Wenzl, The Effect of the phosphor particle sizes on the angular homogeneity of phosphor-converted high-power white LED light sources. IEEE J. Sel. Top. Quantum Electron. 15, 1181–1188 (2009)

    Google Scholar 

  125. N. Narendran, Y. Gu, J.P. Freyssinier-Nova, Y. Zhu, Extracting phosphor-scattered photons to improve white LED efficiency. Phys. Status Solidi 202, R60–R62 (2005)

    ADS  Google Scholar 

  126. H.-C. Chen, K.-J. Chen, C.-C. Lin, C.-H. Wang, H.-V. Han, H.-H. Tsai, H.-T. Kuo, S.-H. Chien, M.-H. Shih, H.-C. Kuo, Improvement in uniformity of emission by ZrO2 nano-particles for white LEDs. Nanotechnology 23 (2012)

    Google Scholar 

  127. K.-J. Chen, H.-C. Chen, M.-H. Shih, C.-H. Wang, H.-H. Tsai, S.-H. Chien, C.C. Lin, H.-C. Kuo, Enhanced luminous efficiency of WLEDs using a dual-layer structure of the remote phosphor package. IEEE J. Lightwave Technol. 31, 1941–1945 (2013)

    ADS  Google Scholar 

  128. P. Reiss, J. Bleuse, A. Pron, Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2, 781–784 (2002)

    ADS  Google Scholar 

  129. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    ADS  Google Scholar 

  130. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12, 1102 (2000)

    Google Scholar 

  131. R. Xie, D. Battaglia, X. Peng, Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432– (2007)

    Google Scholar 

  132. X. Wang, W. Li, K. Sun, Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties. J. Mater. Chem. 21, 8558–8565 (2011)

    Google Scholar 

  133. E. Jang, S. Jun, H. Jang, J. Llim, B. Kim, Y. Kim, White-light-emitting diodes with quantum dot color converters for display backlights. Adv. Mater. 22, 3076–3080 (2010)

    Google Scholar 

  134. K.-J. Chen, H.-C. Chen, K.-A. Tsai, C.-C. Lin, H.-H. Tsai, S.-H. Chien, B.-S. Cheng, Y.-J. Hsu, M.-H. Shih, C.-H. Tsai, H.-H. Shih, H.-C. Kuo, Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method. Adv. Funct. Mater. 22, 5138–5143 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chung Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lin, CC. et al. (2015). Light Emitting Diodes. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics