Skip to main content

Visible Light Communication

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

Abstract

Visible light communication (VLC) is a kind of optical communication using visible wavelength of the electromagnetic spectrum from 380 to 780 nm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://www.imsresearch.com/press-release/Succeeding_in_the_Global_Retail_LED_Lamp_Market

  2. A. Cailean, B. Cagneau, L. Chassagne S. Topsu, Y. Alayli, J.-M. Blosseville, Visible light communications: application to cooperation between vehicles and road infrastructures, in Proceedings of Intelligent Vehicles Symposium, 2012 pp. 1055–1059

    Google Scholar 

  3. T. Little, Exploding interest in visible light communications: an applications viewpoint, Smart Lighting Annual Industry-Academia Days, 2012

    Google Scholar 

  4. Y. Ito, S. Haruyama, M. Nakagawa, Rate-adaptive transmission on a wavelength dependent channel for underwater wireless communication using visible light LEDs. IEICE Tech. Rep., SIP 105, 127–132 (2006)

    Google Scholar 

  5. H. Uchiyama, M. Yoshino, H. Saito, M. Nakagawa, S. Haruyama, T. Kakehashi, N. Nagamoto, Photogrammetric system using visible light communication, in IEEE 34th Annual Conference of Industrial Electronics (IECON), 2008 pp. 1771–1776

    Google Scholar 

  6. T. Tanaka, S. Haruyama, New position detection method using image sensor and visible light LEDs, in IEEE Second International Conference on Machine Vision (ICMV 2009), 2009 pp. 150–153

    Google Scholar 

  7. Visible Light Communications Consortium, www.vlcc.net

  8. S. Haruyama, Japan’s visible light communications consortium and its standardization activities, Visible Light Communications Consortium

    Google Scholar 

  9. OMEGA project, http://www.ict-omega.eu

  10. Center for Ubiquitous Communication by Light, http://www.uclight.ucr.edu/

  11. Smart Lighting ERC, www.smartlighting.rpi.edu

  12. The Li-Fi Consortium website http://www.lificonsortium.org

  13. IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-range wireless optical communication Using Visible Light, IEEE Std 802.15.7-2011, 2011 pp. 301–309

    Google Scholar 

  14. S. Rajagopal, R.D. Roberts, S.-K. Lim, IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Comm. Mag. 50, 72–82 (2012)

    Article  Google Scholar 

  15. H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, High-speed visible light communications using multiple-resonant equalization. IEEE Photon. Technol. Lett. 20, 1243–1245 (2008)

    Article  ADS  Google Scholar 

  16. H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, 80 Mbit/s visible light communications using pre-equalized white LED, in Proceedings ECOC, Paper P.6.09, 2008

    Google Scholar 

  17. H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, 100-Mb/s NRZ visible light communications using a post-equalized white LED. IEEE Photon. Technol. Lett. 21, 1063–1065 (2009)

    Article  Google Scholar 

  18. J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K.-D. Langer, and J.W. Walewski, 125 Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs, in Proceedings ECOC, Paper 9.6.4, 2009

    Google Scholar 

  19. J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K.-D. Langer, and J.W. Walewski, 230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs, in Proceedings OFC, Paper OThH3, 2010

    Google Scholar 

  20. C.W. Chow, C.H. Yeh, Y. Liu, Y.F. Liu, Digital signal processing for light emitting diode based visible light communication, (Invited paper) in IEEE Photonics Society Newsletter, vol. 26, (2012) pp. 9–13

    Google Scholar 

  21. Y.F. Liu, Y.C. Chang, C.W. Chow, C.H. Yeh, Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system, in Proceedings of OFC, Paper JWA083, 2011

    Google Scholar 

  22. C.W. Chow, C.H. Yeh, Y.F. Liu, Y. Liu, Improved modulation speed of LED visible light communication system integrated to main electricity network. Electron. Lett. 47, 867–868 (2011)

    Article  Google Scholar 

  23. C.H. Yeh, Y.F. Liu, C.W. Chow, Y. Liu, P.Y. Huang, H.K. Tsang, Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system. Opt. Express 20, 16218–16223 (2012)

    Article  Google Scholar 

  24. C.W. Chow, C.H. Yeh, Y.F. Liu, P.Y. Huang, Background optical noises circumvention in LED optical wireless systems using OFDM. IEEE Photon. J. 5, 7900709 (2013)

    Article  Google Scholar 

  25. C.W. Chow, C.H. Yeh, Y.F. Liu, P.Y. Huang, Mitigation of optical back-ground noise in light-emitting diode (LED) optical wireless communication systems. IEEE Photon. J. 5, 7900307 (2013)

    Article  Google Scholar 

  26. T. Komine, S. Haruyama, M. Nakagawa, Bidirectional visible-light communication using corner cube modulator. IEIC Tech. Rep. 102, 41–46 (2003)

    Google Scholar 

  27. J. Hou, D. O’Brien, Vertical handover-decision-making algorithm using fuzzy logic for the integrated radio-and-OW system. IEEE Trans. Wirel. Comm. 5, 176–185 (2006)

    Article  Google Scholar 

  28. Y.F. Liu, C.H. Yeh, C.W. Chow, Y. Liu, Y.L. Liu, H.K. Tsang, Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Opt. Express 20, 23019–23024 (2012)

    Article  ADS  Google Scholar 

  29. F.L. Jenq, Y.C. Pu, Z.C. Weng, An AC LED smart lighting system with white light FSO communication, in Proceedings of Computer Comm. Control and Auto., 2010 pp. 488–491

    Google Scholar 

  30. F.L. Jenq, T.J. Liu, F.Y. Leu, An AC LED smart lighting system with visible light time-division multiplexing free space optical communication, in Proceedings of Computer Comm. Control and Auto., 2010 pp. 589–593

    Google Scholar 

  31. Y.F. Liu, C.H. Yeh, C.W. Chow, Alternating-signal biased system design and demonstration for visible light communication. IEEE Photon. J. 5, 7901806 (2013)

    Article  Google Scholar 

  32. T. Komine, M. Nakagawa, Integrated system of white LED visible-light communication and power-line communication. IEEE Trans. on Consum. Electron. 49, 71–79 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wai Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chow, CW., Yeh, CH. (2015). Visible Light Communication. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics