Skip to main content

Plasmonic Nanoslit Arrays for Sensitive Biosensors

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

Abstract

Surface plasmon resonance (SPR) biosensors are widely used in label-free biological detections. The common SPR biosensors utilize the prism or grating coupling method to meet the momentum matching conditions. In addition to the prism or grating methods, biosensors based on periodic nanostructures take advantages of chip-based and high-throughput detections. In periodic gold nanoslits, the optical transmission is usually accompanied by an asymmetrical resonance, known as Fano resonance . It is formed due to the interference of a narrowband SPR resonance with a broadband gap resonance. In this work, several factors that can enhance the Fano resonance properties and detection limits of gold nanoslit sensors are discussed, including (1) dimension and period of the nanoslits, (2) spectral integration analysis, and (3) thermally annealed gold film. By using above methods and nanostructures, the detection sensitivity and resolution will be comparable or even higher than conventional expensive SPR system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ε :

Dielectric constants of outside environment

ε m :

Dielectric constants of metal

n :

The refractive index of outside environment

L spp :

Propagating length

k spp :

Propagation constant of surface plasmon

k g :

Grating wavevector

E x :

x-component of the electric field

E z :

z-component of the electric field

θ:

Angle of incidence in a medium

λ:

Wavelength

λ0 :

Reference wavelength

RIU :

Refractive index unit

P:

Period

i, j :

Orders of Bragg condition

S λ :

Wavelength sensitivity

S I :

Intensity sensitivity

n eff :

Equivalent refractive index of surface plasmon

w :

Width of the gold nanoslit

h :

Thickness of the gold film

ϕ :

Phase shift

R :

Integrated response

n 0 :

Reference refractive index

λ 1,λ 2 :

Integrated wavelength range

T i :

ith order of the resonant transmission

δλ :

Wavelength resolution of the spectrometer

Δλ :

Full width at half maximum (FWHM) bandwidth

References

  1. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B-Chem. 54, 3–15 (1999)

    Article  Google Scholar 

  2. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  3. M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270, 467–470 (1995)

    Article  ADS  Google Scholar 

  4. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  5. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  6. K.A. Tetz, L. Pang, Y. Fainman, High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt. Lett. 31, 1528–1530 (2006)

    Article  ADS  Google Scholar 

  7. K.L. Lee, S.H. Wu, P.K. Wei, Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing. Opt. Express 17, 23104–23113 (2009)

    Article  ADS  Google Scholar 

  8. H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24, 5233–5237 (2008)

    Article  Google Scholar 

  9. F. Hao, N. Sonnefraud, P. Van Dorpe, S.A. Maier, N.J. Halas, P.J. Nordlander, Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance. Nano Lett. 8, 3983–3988 (2008)

    Article  ADS  Google Scholar 

  10. N.A. Mirin, K. Bao, P. Nordlander, Fano resonances in plasmonic nanoparticle aggregates. J. Phys. Chem. A 113, 4028–4034 (2009)

    Article  Google Scholar 

  11. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2010)

    Article  ADS  Google Scholar 

  12. N. Verellen, P. Van Dorpe, C.J. Huang, K. Lodewijks, G.A.E. Vandenbosch, L. Lagae, V.V. Moshchalkov, Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11, 391–397 (2011)

    Article  ADS  Google Scholar 

  13. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 4, 396–402 (1902)

    Article  Google Scholar 

  14. U. Fano, Theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surface (Sommerfield’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)

    Article  ADS  Google Scholar 

  15. E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23, 2135–2136 (1968)

    Google Scholar 

  16. A. Otto, Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z. Physik 216, 398–410 (1968)

    Article  ADS  Google Scholar 

  17. H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, vol. 111, Springer Tracks Modern Physics (Springer, Berlin, 1983)

    Google Scholar 

  18. F.C. Chien, C.Y. Lin, J.N. Yih, K.L. Lee, C.W. Chang, P.K. Wei, C.C. Sun, S.J. Chen, Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating. Biosens. Bioelectron. 22, 2737–2742 (2007)

    Article  Google Scholar 

  19. J.S. Shumaker-Parry, C.T. Campbell, Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem. 76, 907–917 (2004)

    Article  Google Scholar 

  20. T.M. Chinowsky, M.S. Grow, K.S. Johnston, K. Nelson, T. Edwards, E. Fu, P. Yager, Compact, high performance surface plasmon resonance imaging system. Biosens. Bioelectron. 22, 2208–2215 (2007)

    Article  Google Scholar 

  21. P.Y. Li, B. Lin, J. Gerstenmaier, B.T. Cunningham, A new method for label-free imaging of biomolecular interactions. Sens. Actuators B: Chem. 99, 6–13 (2004)

    Article  Google Scholar 

  22. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  23. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  24. H.A. Bethe, Theory of Diffraction by Small Holes. Phys. Rev. 66, 163–182 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. K.L. Lee, W.S. Wang, P.K. Wei, Comparisons of surface plasmon sensitivities in periodic gold nanostructures. Plasmonics 3, 119–125 (2008)

    Article  Google Scholar 

  26. R. Gordon, Light in a subwavelength slit in a metal: propagation and reflection. Phys. Rev. B 73, 153405 (2006)

    Article  ADS  Google Scholar 

  27. K.L. Lee, W.S. Wang, P.K. Wei, Sensitive label-free biosensors by using gap plasmons in gold nanoslits. Biosens. Bioelectron. 24, 210–215 (2008)

    Article  Google Scholar 

  28. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  29. C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A.A. Yanik, H. Altug, G. Shvets, Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2012)

    Article  ADS  Google Scholar 

  30. K.-L. Lee, S.-H. Wu, C.-W. Lee, P.-K. Wei*, Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves. Opt. Express 19(24), 24530–24539 (2011)

    Article  ADS  Google Scholar 

  31. J. Feng, V.S. Siu, A. Roelke, V. Mehta, S.Y. Rhieu, G.T.R. Palmore, D. Pacifici, Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett. 12, 602–609 (2012)

    Article  ADS  Google Scholar 

  32. K.-L. Lee, P.-K. Wei*, Enhancing surface plasmon detection using ultrasmall nanoslits and multispectral integration method. Small 6, 1900–1907 (2010)

    Article  Google Scholar 

  33. M.E. Stewart, N.H. Mack, V. Malyarchuk, J. Soares, T.W. Lee, S.K. Gray, R.G. Nuzzo, J.A. Rogers, Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA 103, 17143–17148 (2006)

    Article  ADS  Google Scholar 

  34. A.G. Brolo, R. Gordon, B. Leathem, K.L. Kavanagh, Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813–4815 (2004)

    Article  Google Scholar 

  35. J.C. Yang, J. Ji, J.M. Hogle, D.N. Larson, Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes. Nano Lett. 8, 2718–2724 (2008)

    Article  ADS  Google Scholar 

  36. P. Nagpal, N.C. Lindquist, S.H. Oh, D.J. Norris, Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009)

    Article  ADS  Google Scholar 

  37. K.P. Chen, V.P. Drachev, J.D. Borneman, A.V. Kildishev, V.M. Shalaev, Drude relaxation rate in grained gold nanoantennas. Nano Lett. 10, 916–922 (2010)

    Article  ADS  Google Scholar 

  38. K.L. Lee, P.W. Chen, S.H. Wu, J.B. Huang, S.Y. Yang, P.K. Wei, Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. ACS Nano 6, 2931–2939 (2012)

    Article  Google Scholar 

  39. H. Im, S.H. Lee, J.N. Wittenberg, T.W. Johnson, C.N. Lindquist, P. Nagpal, D.J. Norris, S.H. Oh, Template-stripped smooth ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5, 6244–6253 (2011)

    Article  Google Scholar 

  40. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  41. R. Gordon, D. Sinton, K.L. Kavanagh, A.G. Brolo, A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 41, 1049–1057 (2008)

    Article  Google Scholar 

  42. A.A. Yanik, M. Huang, O. Kamohara, A. Artar, T.W. Geisbert, J.H. Connor, H. Altug, An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 10, 4962–4969 (2010)

    Article  ADS  Google Scholar 

  43. S.H. Wu, K.L. Lee, A. Chiou, X.H. Cheng, P.K. Wei, Optofluidic platform for real-time monitoring of live cell secretory activities using fano resonance in gold nanoslits. Small 9, 3532–3540 (2013)

    Article  Google Scholar 

  44. F.B. Myers, L.P. Lee, Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8, 2015–2031 (2008)

    Article  Google Scholar 

  45. D. Di Carlo, L.Y. Wu, L.P. Lee, Dynamic single cell culture array. Lab Chip 6, 1445–1449 (2006)

    Article  Google Scholar 

  46. B.M. Wong, W.C. Lumma, A.M. Smith, J.T. Sisko, S.D. Wright, T.Q. Cai, Cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation. J. Leukoc. Biol. 69, 959–962 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Kuen Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, KL., Wu, SH., Wei, PK. (2015). Plasmonic Nanoslit Arrays for Sensitive Biosensors. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_25

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics