Skip to main content

Nanorod LED Arrays

  • Chapter
  • First Online:
The Current Trends of Optics and Photonics

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

  • 4210 Accesses

Abstract

Fabrication of the wide bandgap GaN-based light emitting diodes (LEDs) and physical property are introduced in this section. Traditional planar GaN-based LEDs development is facing performance limit due to the low light-extraction efficiency and strain-induced quantum-confined Stark effect (QCSE) . The lattice mismatch in GaN-based LED epi-structure induces piezoelectric field . The piezoelectric field thus tilts the energy band structure and separates carriers in InGaN/GaN multiple quantum wells (MQWs), resulting in internal quantum efficiency (IQE) droop. To increase surface to volume ratio and strain relaxation, low dimensional structures such as nanorods and nanowires were developed. In Sect. 24.1, bottom-up and top-down approaches will be introduced. By using the Raman scattering measurement, strain in GaN-based epi-structure can be further verified. We show that nanorod structure can mitigate QCSE and improve the electron-hole overlapping ratio. We also indicate that longer nanorod structure has higher optical output, but trade-off has to be made as more defects are picked up during the etching process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( E_{2}^{H} \) :

Phonon mode of material

References

  1. C.-C. Chen, C.-C. Yeh, Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12, 738–741 (2000)

    Article  Google Scholar 

  2. P. Cheyssac, M. Sacilotti, G. Patriarche, Vapor-liquid-solid mechanisms: challenges for nanosized quantum cluster/dot/wire materials. J. Appl. Phys. 100, 044315 (2006)

    Article  ADS  Google Scholar 

  3. Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zhang, Y. Chen, Extended vapor–liquid–solid growth and field emission properties of aluminium nitride nanowires. J. Mater. Chem. 8, 2024–2027 (2003)

    Article  Google Scholar 

  4. C.C. Tang, S.S. Fan, M.L. Chapelle, P. Li, Silica-assisted catalytic growth of oxide and nitride nanowires. Chem. Phys. Lett. 333, 12–15 (2001)

    Article  ADS  Google Scholar 

  5. Y.H. Kim, J.Y. Lee, S.-H. Lee, J.-E. Oh, H.S. Lee, Synthesis of aligned GaN nanorods on Si (111) by molecular beam epitaxy. Appl. Phys. A 80, 1635–1639 (2005)

    Article  ADS  Google Scholar 

  6. L.W. Tu, C.L. Hsiao, T.W. Chi, I. Lo, K.Y. Hsieh, Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 82, 1601–1603 (2003)

    Article  ADS  Google Scholar 

  7. S.Y. Kuo, C.C. Kei, C.N. Hsiao, C.K. Chao, Growth of gallium nitride nanorods by metalorganic molecular beam epitaxy. J. Vac. Sci. Technol. B 24, 695–699 (2006)

    Article  Google Scholar 

  8. P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach, T. Sands, Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography. Nano Lett. 5, 1847–1851 (2005)

    Article  ADS  Google Scholar 

  9. H.W. Huang, C.C. Kao, T.H. Hsueh, C.C. Yu, C.F. Lin, J.T. Chu, H.C. Kuo, S.C. Wang, Fabrication of GaN-based nanorod light emitting diodes using self-assemble nickel nano-mask and inductively coupled plasma reactive ion etching. Mater. Sci. Eng., B 113, 125–129 (2004)

    Article  Google Scholar 

  10. M.Y. Hsieh, C.Y. Wang, L.Y. Chen, M.Y. Ke, J.J. Huang, InGaN–GaN nanorod light emitting arrays fabricated by silica nanomasks. IEEE J. Quantum Electron. 44 (2008)

    Google Scholar 

  11. Y.Y. Huang, L.Y. Chen, C.H. Chang, Y.H. Sun, Y.W. Cheng, M.Y. Ke, Y.H. Lu, H.C. Kuo, J.J. Huang, Investigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arrays. Nanotechnology 22(4), 045202-1–045202-6 (2011)

    Google Scholar 

  12. C.Y. Wang, L.Y. Chen, C.P. Chen, Y.W. Cheng, M.Y. Ke, M.Y. Hsieh, H.M. Wu, L.H. Peng, J.J. Huang, GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength. Opt. Express 14, 10556 (2008)

    Google Scholar 

  13. Y.J. Lee, S.Y. Lin, C.H. Chiu, T.C. Lu, H.C. Kuo, S.C. Wang, S. Chhajed, J.K. Kim, E.F. Schubert, High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays. Appl. Phys. Lett. 94, 141111 (2009)

    Article  ADS  Google Scholar 

  14. C.H. Chiu, T.C. Lu, H.W. Huang, C.F. Lai, C.C. Kao, J.T. Chu, C.C. Yu, H.C. Kuo, S.C. Wang, C.F. Lin, T.H. Hsueh, Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands. Nanotechnology 18, 445201 (2007)

    Article  ADS  Google Scholar 

  15. A. Kikuchi, M. Tada, K. Miwa, K. Kishino, Growth and characterization of InGaN/GaN nanocolumn LED. Proc. SPIE 6129, 612905 (2006)

    Article  Google Scholar 

  16. L.Y. Chen, Y.Y. Huang, C.H. Chang, Y.H. Sun, Y.W. Cheng, M.Y. Ke, C.P. Chen, J.J. Huang, High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes. Opt. Express 18, 7664–7669 (2010)

    Article  Google Scholar 

  17. C.T. Sah, R.N. Noyce, W. Shockley, Carrier generation and recombination in p-n junctions and p-n junction characteristics. Proc. IRE 45, 1228 (1957)

    Article  Google Scholar 

  18. K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, M. Razeghi, High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well. Appl. Phys. Lett. 84, 1046 (2004)

    Article  ADS  Google Scholar 

  19. J.M. Shah, Y.-L. Li, Th Gessmann, E.F. Schubert, Experimental analysis and theoretical model for anomalously high ideality factors (n ≫ 2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys. 94, 2627 (2003)

    Article  ADS  Google Scholar 

  20. D. Zhu, J. Xu, A.N. Noemaun, J.K. Kim, E.F. Schubert, M.H. Crawford, D.D. Koleske, The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94, 081113 (2009)

    Article  ADS  Google Scholar 

  21. P. Deb, H. Kim, Y. Qin, R. Lahiji, M. Oliver, R. Reifenberger, T. Sands, GaN nanorod Schottky and p-n junction diodes. Nano Lett. 6, 2893–2898 (2006)

    Article  ADS  Google Scholar 

  22. A. Motayed, A.V. Davydov, M.D. Vaudin, I. Levin, J. Melngailis, S.N. Mohammad, Fabrication of GaNbased nanoscale device structures utilizing focused ion beam induced Pt deposition. J. Appl. Phys. 100, 024306 (2006)

    Article  ADS  Google Scholar 

  23. C.H. Chang, L.Y. Chen, L.C. Huang, Y.T. Wang, T.C. Lu, J.J. Huang, Effects of strains and defects on the internal quantum efficiency of InGaN/GaN nanorod light emitting diodes. J. Quantum Electron. 48(4), 551–555 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tan, JY., Chen, LY., Huang, JJ. (2015). Nanorod LED Arrays. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_24

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics