Skip to main content

Liquid Crystals for Bio-medical Applications

  • Chapter
  • First Online:
The Current Trends of Optics and Photonics

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

Abstract

Thermotropic nematic LCs can modulate light in phases, amplitudes, and polarizations [Yang and Wu in Fundamentals of Liquid Crystal Devices. John Wiley, Chichester, 2006 1]. Many photonic applications based LCs have developed, such as displays, electro-optical switches, lenses, optical vortex generators, variable optical attenuations, solar cells and so on. Thermotropic nematic LCs have great potential in bio-medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.K. Yang, S.T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, Chichester, 2006)

    Book  Google Scholar 

  2. G.T. Stewart, Liquid crystals in biology I. Historical, biological and medical aspects. Liq. Cryst. 30(5), 541–557 (2004)

    Article  Google Scholar 

  3. G.T. Stewart, Liquid crystals in biology II. Origins and processes of life. Liq. Cryst. 31(4), 443–471 (2004)

    Article  Google Scholar 

  4. S.J. Woltman, G.P. Crawford, G.D. Jay, Liquid Crystals: Frontiers in Biomedical Applications (World Scientific, Hackensack, 2007)

    Google Scholar 

  5. S.J. Woltman, G.D. Jay, G.P. Crawford, Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007)

    Article  ADS  Google Scholar 

  6. A. Hussain, A.S. Pina, A.C.A. Roque, Bio-recognition and detection using liquid crystals. Biosens. Bioelectron. 25, 1–8 (2009)

    Article  Google Scholar 

  7. J.P.F. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 12, 1387–1412 (2012)

    Article  ADS  Google Scholar 

  8. J.M. Brake, M.K. Daschner, Y.Y. Luk et al., Biomolecular interactions a phospholpid-decorated surfaces of liquid crystals. Science 302, 2094–2097 (2003)

    Article  ADS  Google Scholar 

  9. Y.Y. Luk, M.L. Tingey, K.A. Kickson et al., Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals. J. Am. Chem. Soc. 126, 9024–9032 (2004)

    Article  Google Scholar 

  10. M.L. Tingey, S. Wilyana, E.J. Snodgrass et al., Imaging of affinity microcontact printed proteins by using liquid crystals. Langmuir 20, 6818–6826 (2004)

    Article  Google Scholar 

  11. B.H. Clare, N.L. Abbott, Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events. Langmuir 21, 6451–6461 (2005)

    Article  Google Scholar 

  12. N.A. Lockwood, J.C. Mohr, L. Ji et al., Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells. Adv. Funct. Mater. 16, 618–624 (2006)

    Article  Google Scholar 

  13. A.D. Price, D.K. Schwartz, DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/Aqueous interface. J. Am. Chem. Soc. 130, 8188–8194 (2008)

    Article  Google Scholar 

  14. S. Sivakumar, K.L. Wark, J.K. Gupta et al., Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv. Funct. Mater. 19, 2260–2265 (2009)

    Article  Google Scholar 

  15. C.H. Chen, K.L. Yang, Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals. Langmuir 26(3), 1427–1430 (2010)

    Article  Google Scholar 

  16. Y.H. Lin, H. Ren, Y.H. Wu et al., Electrically tunable wettability of liquid crystal/polymer composite films. Opt. Express 16(22), 17591–17598 (2008)

    Article  ADS  Google Scholar 

  17. Y.P. Chiu, C.Y. Shen, Y.H. Lin, Characteristics of electrically switchable wettability surfaces of liquid crystal and polymer composite films. Jpn. J. Appl. Phys. 49, 071604 (2010)

    Article  ADS  Google Scholar 

  18. Y.P. Chiu, C.Y. Shen, W.C. Wang, Electrically surface-driven switchable wettability of liquid crystal/polymercomposite film. Appl. Phys. Lett. 96, 131902 (2010)

    Article  ADS  Google Scholar 

  19. Y.H. Lin, J.K. Li, T.Y. Chu et al., A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film. Opt. Express 18(8), 10104–10111 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Y.H. Lin, T.Y. Chu, W.L. Chu et al., A sperm testing device on a liquid crystal and polymer composite film. J. Nanomedic. Nanotechnol. S9, 001 (2011)

    Article  Google Scholar 

  21. Y.H. Lin, T.Y. Chu, Y.S. Tsou et al., An electrically switchable surface free energy on a liquid crystal and polymer composite film. Appl. Phys. Lett. 101, 233502 (2012)

    Article  ADS  Google Scholar 

  22. P.G. De Gennes, F.B. Wyart, D. Quere, Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  23. D. Seo, Y. Agca, Z. Feng, J. Critser, Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid. Nanofluid. 3, 561–570 (2007)

    Article  Google Scholar 

  24. D. McGrowder, C. Riley, E.Y.S.A. Morrison et al., The role of high-density lipoproteins in reducing the risk of vascular diseases, neurogenerative disorders, and cancer. Cholesterol 2011, 496925 (2011)

    Article  Google Scholar 

  25. I.D. Cruzadoa, S. Songa, S.F. Crouseb et al., Characteriazation and quantification of the apoproteins of high-density lipoprotein by capillary electrophoresis. Anal. Biochem. 243, 100–109 (1996)

    Article  Google Scholar 

  26. Y.H. Lin, K.H. Chang, W.L. Chu, A biosensor of high-density lipoprotein of human serum on a liquid crystal and polymer composite film. Proc. SPIE 8828, 88280I (2013)

    Article  Google Scholar 

  27. L. Wemer, F. Trindade, F. Pereira et al., Physiology of Accommodation and presbyopia. Arq. Bras. Oftalmol. 63, 503–509 (2000)

    Google Scholar 

  28. E. Hermans, M. Dubbelman, R.V.D. Heijde RVD et al., The shape of the human lens nucleus with accommodation. J. Vis. 7(10), 16.1–16.10 (2007)

    Google Scholar 

  29. G.Y. Yoon, D.R. Williams, Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J. Opt. Soc. Am. 19, 266–275 (2002)

    Article  ADS  Google Scholar 

  30. M. Jalie, Opthalmic lenses and dispensing, 3rd edn. (Elsevier Health Sciences, London, 2008)

    Google Scholar 

  31. D.A. Atchison, G. Smith, in OPTICS of the HUMAN EYES. (Elsevier Science Limited, Amsterdam, 2002)

    Google Scholar 

  32. Y.H. Lin, H.S. Chen, Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt. Express 21(8), 9428–9436 (2013)

    Article  ADS  Google Scholar 

  33. H.C. Lin, M.S. Chen, Y.H. Lin, A review of electrically tunable focusing liquid crystal lenses. Trans. Electr. Electron. Mater. 12, 234–240 (2011)

    Article  Google Scholar 

  34. M. Ye, S. Sato, Optical properties of liquid crystal lens of any size. Jpn. J. Appl. Phys. 41, L571–L573 (2002)

    Article  ADS  Google Scholar 

  35. H. Ren, S.T. Wu, Introduction to Adaptive Lenses (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  36. Y.H. Lin, H. Ren, Y.H. Wu et al., Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure. Opt. Express 13(22), 8746–8752 (2005)

    Article  ADS  Google Scholar 

  37. Y.H. Lin, H.S. Chen, H.C. Lin et al., Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Appl. Phys. Lett. 96(11), 113505 (2010)

    Article  ADS  Google Scholar 

  38. H. Ren, Y.H. Lin, S.T. Wu, Polarization independent and fast-response phase modulators using double-layered liquid crystal gels. Appl. Phys. Lett. 88(6), 061123 (2006)

    Article  ADS  Google Scholar 

  39. H. Ren, Y.H. Lin, C.H. Wen, S.T. Wu, Polarization-independent phase modulation of a homeotropic liquid crystal gel. Appl. Phys. Lett. 87(19), 191106 (2005)

    Article  ADS  Google Scholar 

  40. H. Ren, Y.H. Lin, Y.H. Fan et al., Polarization-independent phase modulation using a polymer-dispersed liquid crystal. Appl. Phys. Lett. 86(14), 141110 (2005)

    Article  ADS  Google Scholar 

  41. Y.H. Lin, H. Ren, Y.H. Fan et al., Polarization-independent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture. J. Appl. Phys. 98, 043112 (2005)

    Article  ADS  Google Scholar 

  42. Y.H. Lin, Y.S. Tsou, A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals. J. Appl. Phys. 110, 114516 (2011)

    Article  ADS  Google Scholar 

  43. Y.H. Lin, M.S. Chen, W.C. Lin et al., A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell. J. Appl. Phys. 112, 024505 (2012)

    Article  ADS  Google Scholar 

  44. G.Q. Li, D.L. Mathine, P. Valley et al., Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006)

    Article  ADS  Google Scholar 

  45. H.S. Chen, M.S. Chen, Y.H. Lin, in Electrically tunable ophthalmic lenses for myopia and presbyopia using liquid crystals. In: Optics of Liquid Crystals. (Honolulu, Hawaii, 29 Sept–4 Oct 2013

    Google Scholar 

  46. H.C. Lin, Y.H. Lin, A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens. Appl. Phys. Lett. 97, 063505 (2010)

    Article  ADS  Google Scholar 

  47. Y.H. Lin, M.S. Chen, A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses. J Disp. Technol. 8, 401–404 (2012)

    Article  Google Scholar 

  48. Y.S. Tsou, Y.H. Lin, A.C. Wei, Concentrating photovoltaic system using a liquid crystal lens. IEEE Photon. Technol. Lett. 24(24), 2239–2242 (2012)

    Article  ADS  Google Scholar 

  49. N. Collings, Y.H. Lin, H.C. Lin et al., Tunable liquid crystal lens for a holographic projection system. Proc. SPIE 8828, 88281B (2013)

    Article  Google Scholar 

  50. Y.H. Lin, H.S. Chen, An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field. Opt. Express 21(15), 18079–18088 (2013)

    Article  Google Scholar 

  51. Y.S. Tsou, K.H. Chang, Y.H. Lin, A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system. J. Appl. Phys. 113, 244504 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hsin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lin, YH. (2015). Liquid Crystals for Bio-medical Applications. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics