Skip to main content

Thin Film Optical Coatings

  • Chapter
  • First Online:
The Current Trends of Optics and Photonics

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

Abstract

Several current interesting optical coatings are introduced. Coatings with reflectance greater than 100 % have been realized by using gain layer with negative extinction coefficient. A useful coating area of filters for DWDM has been enlarged with the uniformity better than ±0.003 % over an area of 50 mm in diameter and better than ±0.0006 % over a 20 mm in diameter by using etching technique on the depositing layers with oxygen ion and shaping tooling factor technique. Antireflection coatings with characteristics of hydrophobic, hydrophilic, residual color to decorate solar cells and blackness has been utilized in design and fabricated. The advantages of coatings with negative refractive index layer have been illustrated. Five advanced monitoring methods to achieve the coating as the design have been proposed and proved better than conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-J. Chen, C.-C. Lee, S.-H. Chen, F. Flory, Extra-high reflection coating with negative extinction coefficient. Opt. Lett. 38, 3377–3379 (2013)

    Article  Google Scholar 

  2. H.A. Macleod, Thin-Film optical Filter, 4th ed (CRC Press, New York, 2010)

    Book  Google Scholar 

  3. H.A. Macleod, Gain optical coatings: part 1. Bull. Soc. Vac. Coaters Issue Fall, 22–27 (2011)

    Google Scholar 

  4. A.J. Nozik, Quantum dot solar cells. Phys. E 14, 115–120 (2002)

    Article  Google Scholar 

  5. Prashant.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112(48), 18737–18753 (2008)

    Article  Google Scholar 

  6. H.-J. Lin, S. Vedraine, J. Le-Rouzo, S.-H. Chen, F. Flory, C.-C. Lee, Optical properties of quantum dots layers: application to photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 117, 625–656 (2013)

    Article  Google Scholar 

  7. J. Wu, Z.M. Wang (eds.), Quantum Dot Solar Cells (Springer, New York, 2014)

    Google Scholar 

  8. J. Zhao, J.A. Bardecker, A.M. Munro, M.S. Liu, Y. Niu, I.-K. Ding, J. Luo, B. Chen, A.K.-Y. Jen, D.S. Ginger, Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6(3), 463–467 (2006)

    Article  ADS  Google Scholar 

  9. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, A. Seeds, Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat. Photonics 5, 416–419 (2011)

    Article  ADS  Google Scholar 

  10. T.-H. Kim, K.-S. Cho, E.K. Lee, S.J. Lee, J. Chae, J.W. Kim, D.H. Kim, J.-Y. Kwon, G. Amaratunga, S.Y. Lee, B.L. Choi, Y. Kuk, J.M. Kim, K. Kim, Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5, 176–182 (2011)

    Article  ADS  Google Scholar 

  11. S. Jin, Y. Hu, Z. Gu, L. Liu, H.-C. Wu, Application of quantum dots in biological imaging. J. Nanomaterials 2011(834139) (2011). doi:10.1155/2011/834139

  12. A. Fang, T. Koschny, M. Wegener, C.M. Soukoulis, Self-consistent calculation of metamaterials with gain. Phys. Rev. B 79, 241104(R) (2009)

    Article  ADS  Google Scholar 

  13. S.M. Xiao, V.P. Drachev, A.V. Kildishev, X.J. Ni, U.K. Chettiar, H.K. Yuan, V.M. Shalaev, Loss-free and active optical negative-index metamaterials. Nature 466, 735–740 (2010)

    Article  ADS  Google Scholar 

  14. M. Decker, I. Staude, I.I. Shishkin, K.B. Samusev, P. Parkinson, V.K.A. Sreenivasan, A. Minovich, A.E. Miroshnichenko, A. Zvyagin, C. Jagadish, D.N. Neshev, Y.S. Kivshar, Dual-channel spontaneous emission of quantum dots in magnetic metamaterials. Nat. Commun. 4(2949) (2013). doi:10.1038/ncomms3949

  15. L. Ivan Epstein, The design of optical filter. J. Opt. Soc. Am. 42, 806–810 (1952)

    Article  Google Scholar 

  16. C.-C. Lee, Thin Film Optics and Coating Technology, 7th edn. (Yi Hsien, Taipei, 2012)

    Google Scholar 

  17. H. Angus Macleod, Turning value monitoring of narrow-band all-dielectric thin-film optical filters. Optica Acta 19, 1–28 (1972)

    Article  ADS  Google Scholar 

  18. H.A. Macleod, Monitoring of optical coatings. Appl. Opt. 20, 82–89 (1981)

    Article  ADS  Google Scholar 

  19. C.-C. Lee, W. Kai, C.-C. Kuo, S.-H. Chen, Improvement of the optical coating process by cutting layers with sensitive monitor wavelengths. Opt. Express 13, 4854–4861 (2005)

    Article  ADS  Google Scholar 

  20. C.-C. Lee, W. Kai, In situ sensitive optical monitoring with error compensation. Opt. Lett. 32(15), 2118–2120 (2007)

    Article  ADS  Google Scholar 

  21. C.-C. Lee, S.-H. Chen, C.-C. Kuo, Fabrication of DWDM filters with large useful area. SPIE Optics and Photonics, paper #6286-15, San Diego, USA, 13–17 Aug 2006

    Google Scholar 

  22. C.-C. Lee, S.-H. Chen, C.-C. Kuo, C.-Y. Wei, Achievement of an arbitrary bandwidth for a narrow bandpass filter. Opt. Express 15, 15228–15233 (2007)

    Article  ADS  Google Scholar 

  23. C.-C. Lee, Optical interference coatings for optics and photonics (Invited). Appl. Opt. 52, 73–81 (2013)

    Article  ADS  Google Scholar 

  24. S.R. Kennedy, M.J. Brett, Porous broadband antireflection coating by glancing angle deposition. Appl. Opt. 42, 4573–4579 (2003)

    Article  ADS  Google Scholar 

  25. Y.F. Huang, S. Chattopadhyay, Y.J. Jen, C.Y. Peng, T.A. Liu, Y.K. Hsu, C.L. Pan, H.C. Lo, C.H. Hsu, Y.H. Chang, C.S. Lee, K.H. Chen, L.-C. Chen, Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2, 770–774 (2007)

    Article  ADS  Google Scholar 

  26. U. Schulz, C. Präfke, C. Gödeker, N. Kaiser, A. Tünnermann, Plasma-etched organic layers for antireflection purposes. Appl. Opt. 50, C31–C35 (2011)

    Article  Google Scholar 

  27. B. Päivänranta, T. Saastamoinen, M. Kuittinen, A wide-angle antireflection surface for the visible spectrum. Nanotechnology 20, 375301 (2009)

    Article  Google Scholar 

  28. J.-Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.-Y. Lin, W. Liu, J.A. Smart, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 1, 176–179 (2007)

    ADS  Google Scholar 

  29. J.-L. Tsai, Applications of negative refraction index materials for antireflection and narrow band pass filters. MS Thesis, Department of Optics and Photonics, National Central University, Taiwan, 2009

    Google Scholar 

  30. H. Ishikawa, B. Lippey, in Two layer broad band AR coating. Proceedings of 10th International Conference on Vacuum Web Coating (Bakish Materials Corporation, 1996), pp. 221–233

    Google Scholar 

  31. G. McHale, N.J. Shirtcliffe, M.I. Newton, Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir 20, 10146–10149 (2004)

    Article  Google Scholar 

  32. L. Mascia, T. Tang, Polyperfluoroether-silica hybrids. Polymer 39, 3045–3057 (1998)

    Article  Google Scholar 

  33. K.C. Camargo, A.F. Michels, F.S. Rodembusch, M.F. Kuhn, F. Horowitz, Visibly transparent and near infrared, wideangle, anti-reflection coatings with simultaneous selfcleaning on glass. Opt. Mater. Express 2, 969–977 (2012)

    Article  Google Scholar 

  34. M. Flemming, A. Duparre, Design and characterization of nanostructured ultrahydrophobic coatings. Appl. Opt. 45, 1397–1401 (2006)

    Article  ADS  Google Scholar 

  35. K. Zhang, F. Zhu, C.H.A. Huan, A.T.S. Wee, Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films 376, 255–263 (2000)

    Article  ADS  Google Scholar 

  36. B. Vidal, A. Fornier, E. Pelletier, Wideband optical monitoring of nonquarter wave multilayer filter. Appl. Opt. 18, 3851–3856 (1979)

    ADS  Google Scholar 

  37. F. Zhao, Monitoring of periodic multilayer by the level method. Appl. Opt. 24, 3339–3343 (1985)

    Article  ADS  Google Scholar 

  38. C.J. van der Laan, Optical monitoring of nonquarterwave stacks. Appl. Opt. 25, 753–760 (1986)

    Article  ADS  Google Scholar 

  39. B. Bobbs, J.E. Rudisill, Optical monitoring of nonquarterwave film thickness using a turning point method. Appl. Opt. 26, 3136–3139 (1987)

    Article  ADS  Google Scholar 

  40. C. Zang, Y. Wang, W. Lu, A single-wavelength monitoring method for optical thin-film coatings. Opt. Eng. 43, 1439–1443 (2004)

    Article  ADS  Google Scholar 

  41. A.V. Tikhonravov, M.K. Trubetskov, Eliminating of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory. Appl. Opt. 46, 2084–2090 (2007)

    Article  ADS  Google Scholar 

  42. J. Lee, R.W. Collins, Real-time characterization of film growth on transparent substrates by rotating-compensator multichannel ellipsometry. Appl. Opt. 37, 4230–4238 (1998)

    Article  ADS  Google Scholar 

  43. S. Dligatch, R. Netterfield, B. Martin, Application of in-situ ellipsometry to the fabrication of multi-layered coatings with sub-nanometre accuracy. Thin Solid Films 455–456, 376–379 (2004)

    Article  Google Scholar 

  44. C.C. Lee, K. Wu, S.H. Chen, S.J. Ma, Optical monitoring and real time admittance loci calculation through polarization interferometer. Opt. Exp. 15, 17536–17541 (2007)

    Article  ADS  Google Scholar 

  45. B. Kimbrough, J. Millerd, J. Wyant, J. Hayes, Low coherence vibration insensitive Fizeau interferometer. Proc. SPIE 6292, 62920F (2006)

    Article  Google Scholar 

  46. Y.R. Chen, Monitoring of film growth by admittance diagram. Master Thesis, National Central University, Taiwan, 2004

    Google Scholar 

  47. B.J. Chun, C.K. Hwangbo, J.S. Kim, Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance. Opt. Express 14, 2473–2480 (2006)

    Article  ADS  Google Scholar 

  48. C.-C. Lee, Y.J. Chen, Multilayer coatings monitoring using admittance diagram. Opt. Express 16(9), 6119–6124 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Wilbrandt, N. Kaiser, O. Stenzel, In-situ broadband monitoring of heterogeneous optical coatings. Thin Solid Films 502, 153–157 (2005)

    Article  ADS  Google Scholar 

  50. B. Badoil, F. Lemarchand, M. Cathelinaud, M. Lequime, Interest of broadband optical monitoring for thin-film filter manufacturing. Appl. Opt. 46, 4294–4303 (2007)

    Article  ADS  Google Scholar 

  51. W. Kai, C.-C. Lee, T.-L. Ni, Advanced broadband monitoring for thin film deposition through equivalent optical admittance loci observation. Opt. Express 20, 3883–3889 (2012)

    Article  ADS  Google Scholar 

  52. C.C. Lee, K. Wu, T.L. Ni, Optical Admittance Loci Monitoring for Thin Film Deposition (Lambert Academic, Saarbrücken, 2012) (ISBN 978-3-659-00198-7)

    Google Scholar 

  53. C.-C. Lee, W. Kai, M.-Y. Ho, Reflection coefficient monitoring for optical interference coating depositions. Opt. Lett. 38, 1325–1327 (2013)

    Article  ADS  Google Scholar 

  54. A.V. Tikhonravov, T.V. Amotchkina, in Optical Thin Film and Coatings, ed. by A. Piegariand, F. Flory. Optical monitoring strategies for optical coating manufacturing, Chap. 3 (Woodhead, Cambridge, 2013). (ISBN 978-0-85709-594-7) (2013)

    Google Scholar 

  55. F. Flory, Y.J. Chen, C.C. Lee, L. Escoubas, J.J. Simon, P. Torchio, J. Le Rouzo, Optical properties of dielectric thin films including quantum dots. Appl. Opt. 50, C129–C134 (2011)

    Article  Google Scholar 

  56. F. Flory, L. Escoubas, G. Berginc, optical properties of nanostructured materials a review. Nanophotonics 5(1), 052502 (2011). doi:10.1117/1.3609266

    Article  Google Scholar 

  57. A. Sytchkova, in Optical Thin Film and Coatings, ed. by A. Piegariand, F. Flory. Complex materials with plasmonic effects for optical thin film application, Chap. 5 and F. Flory, Y.J. Chen, H.L. Lin, Optical thin films containing quantum dots, Chap. 12 (Woodhead, Cambridge, 2013). (ISBN 978-0-85709-594-7)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Chung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, CC. (2015). Thin Film Optical Coatings. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics