Skip to main content

Regulation of the Promyelocytic Leukemia Protein and Its Role in Premature Senescence

  • Chapter
  • First Online:
  • 510 Accesses

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 3))

Abstract

Premature senescence functions as a tumor suppressor mechanism in response to oncogenic stimuli. It is characterized by irreversible cell cycle arrest mediated by tumor suppressors such as p53, Rb and the Promyelocytic Leukemia (PML) protein. PML mainly localizes in sub-nuclear structures known as PML nuclear bodies. These nuclear bodies accumulate in senescent cells largely due to increased PML gene transcription driven by p53 and/or the interferon pathways. PML exerts its pro-senescence activity by modulating both the p53 and Rb pathways, the major regulators of the cellular senescence program. Mechanistically, PML binds and promotes p53 modifications to generate a positive feedback loop, thereby triggering the senescence program. In addition, PML associates with Rb and may function in Rb/E2F-mediated gene silencing in senescent cells. Moreover, PML bodies recruit DNA damage sensing and repair proteins, thereby linking PML to the activation of the DNA damage response pathway, a pathway frequently activated in senescence. Therefore, elucidation of key factors controlling PML protein abundance will help to better understand how cells become transformed by avoiding senescence and allowing continued cellular proliferation in the presence of oncogenic signals. These findings will also be crucial in aiding scientists and physicians in the development of novel anti-cancer therapies by restoring PML to trigger senescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcalay M, Tomassoni L, Colombo E, Stoldt S, Grignani F, Fagioli M et al (1998) The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol 18(2):1084–1093

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bawa-Khalfe T, Cheng J, Lin SH, Ittmann MM, Yeh ET (2010) SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms. J Biol Chem 285(33):25859–25866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP (2004) PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6(7):665–672

    Article  PubMed  CAS  Google Scholar 

  • Buschbeck M, Uribesalgo I, Ledl A, Gutierrez A, Minucci S, Muller S et al (2007) PML4 induces differentiation by Myc destabilization. Oncogene 26(23):3415–3422

    Article  PubMed  CAS  Google Scholar 

  • Carbone R, Pearson M, Minucci S, Pelicci PG (2002) PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21(11):1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Bawa T, Lee P, Gong L, Yeh ET (2006) Role of desumoylation in the development of prostate cancer. Neoplasia 8(8):667–676

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10(1):51–57

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL (2006) eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 175(3):415–426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G et al (2004) PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13(4):523–535

    Article  PubMed  Google Scholar 

  • de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66(4):675–684

    Article  PubMed  Google Scholar 

  • Dellaire G, Farrall R, Bickmore WA (2003) The nuclear protein database (NPD): sub-nuclear localisation and functional annotation of the nuclear proteome. Nucleic Acids Res 31(1):328–330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    Article  PubMed  Google Scholar 

  • Erker Y, Neyret-Kahn H, Seeler JS, Dejean A, Atfi A, Levy L (2013) Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 33(11):2163–2177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14(16):2015–2027

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al (2000) Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19(22):6185–6195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goddard AD, Borrow J, Freemont PS, Solomon E (1991) Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254(5036):1371–1374

    Article  PubMed  CAS  Google Scholar 

  • Gong L, Millas S, Maul GG, Yeh ET (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275(5):3355–3359

    Article  PubMed  CAS  Google Scholar 

  • Gurrieri C, Nafa K, Merghoub T, Bernardi R, Capodieci P, Biondi A et al (2004) Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood 103(6):2358–2362

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa F, Abe A, Kitabayashi I, Pandolfi PP, Naoe T (2008) Acetylation of PML is involved in histone deacetylase inhibitor-mediated apoptosis. J Biol Chem 283(36):24420–24425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khan MM, Nomura T, Kim H, Kaul SC, Wadhwa R, Shinagawa T et al (2001) Role of PML and PML-RARalpha in Mad-mediated transcriptional repression. Mol Cell 7(6):1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Kurki S, Latonen L, Laiho M (2003) Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 116(Pt 19):3917–3925

    Article  PubMed  CAS  Google Scholar 

  • Lai HK, Borden KL (2000) The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 19(13):1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10(5):547–555

    Article  PubMed  CAS  Google Scholar 

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S et al (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21(10):2383–2396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee HE, Jee CD, Kim MA, Lee HS, Lee YM, Lee BL et al (2007) Loss of promyelocytic leukemia protein in human gastric cancers. Cancer Lett 247(1):103–109

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, Liu Y, Reineke E, Kao HY (2011) Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover. J Biol Chem 286(52):44403–44411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Louria-Hayon I, Alsheich-Bartok O, Levav-Cohen Y, Silberman I, Berger M, Grossman T et al (2009) E6AP promotes the degradation of the PML tumor suppressor. Cell Death Differ 16(8):1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Mallette FA, Gaumont-Leclerc MF, Ferbeyre G (2007) The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21(1):43–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17(4):1583–1592

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F et al (1991) Structure and origin of the acute promyelocytic leukemia myl/RAR alpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6(7):1285–1292

    PubMed  CAS  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S et al (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406(6792):207–210

    Article  PubMed  CAS  Google Scholar 

  • Rabellino A, Carter B, Konstantinidou G, Wu SY, Rimessi A, Byers LA et al (2012) The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Res 72(9):2275–2284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Regad T, Chelbi-Alix MK (2001) Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20(49):7274–7286

    Article  PubMed  CAS  Google Scholar 

  • Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B et al (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2):269–283

    Article  PubMed  CAS  Google Scholar 

  • Scaglioni PP, Rabellino A, Yung TM, Bernardi R, Choi S, Konstantinidou G et al (2012) Translation-dependent mechanisms lead to PML upregulation and mediate oncogenic K-RAS-induced cellular senescence. EMBO Mol Med 4(7):594–602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(3):331–339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shtutman M, Zhurinsky J, Oren M, Levina E, Ben-Ze’ev A (2002) PML is a target gene of beta-catenin and plakoglobin, and coactivates beta-catenin-mediated transcription. Cancer Res 62(20):5947–5954

    PubMed  CAS  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5):538–546

    Article  PubMed  CAS  Google Scholar 

  • Vernier M, Bourdeau V, Gaumont-Leclerc MF, Moiseeva O, Begin V, Saad F et al (2011) Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev 25(1):41–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454(7208):1065–1071

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vincenzi B, Perrone G, Santini D, Grosso F, Silletta M, Frezza A et al (2010) PML down-regulation in soft tissue sarcomas. J Cell Physiol 224(3):644–648

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Cao L, Kang R, Yang M, Liu L, Zhao Y et al (2011) Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARalpha oncoprotein. Autophagy 7(4):401–411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1(1):20–26

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB et al (2003) Physical and functional interactions between PML and MDM2. J Biol Chem 278(31):29288–29297

    Article  PubMed  CAS  Google Scholar 

  • Wolyniec K, Shortt J, de Stanchina E, Levav-Cohen Y, Alsheich-Bartok O, Louria-Hayon I et al (2012) E6AP ubiquitin ligase regulates PML-induced senescence in Myc-driven lymphomagenesis. Blood 120(4):822–832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamagishi Y, Shoji I, Miyagawa S, Kawakami T, Katoh T, Goto Y et al (2011) Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem Biol 18(12):1562–1570

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Deng X, Lu B, Cameron M, Fearns C, Patricelli MP et al (2010) Pharmacological inhibition of BMK1 suppresses tumor growth through promyelocytic leukemia protein. Cancer Cell 18(3):258–267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan WC, Lee YR, Huang SF, Lin YM, Chen TY, Chung HC et al (2011) A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell 20(2):214–228

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a NRSA T32 training grant to AET and by NIH grants (GM089763 and GM094777) to WW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lau, A.W., Tron, A.E., Wei, W. (2014). Regulation of the Promyelocytic Leukemia Protein and Its Role in Premature Senescence. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Vol. 3. Tumor Dormancy and Cellular Quiescence and Senescence, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9325-4_9

Download citation

Publish with us

Policies and ethics