Skip to main content

Navigating Complex Buildings: Cognition, Neuroscience and Architectural Design

  • Conference paper
  • First Online:
Studying Visual and Spatial Reasoning for Design Creativity

Abstract

This paper provides a tentative set of ideas which attempt to draw together research from neuroscience, spatial cognition and architecture (space syntax). It starts by considering the questions, “What does the brain do during the navigation of complex built space and how does it map it?” “What can cognitive studies tell us about navigation in complex buildings?” and “What does space syntax measure about structures of space and what does it tell us?” These questions serve as the starting point for the establishment of a framework for future collaborative efforts to bring together these disparate areas but with the fundamental aim of ultimately supporting architects to design more user-friendly buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eberhard JP (2009a) Applying neuroscience to architecture. Neuron 62(6):753–756

    Article  Google Scholar 

  2. Eberhard JP (2009b) Brain landscape: the coexistence of neuroscience and architecture. Oxford University Press, New York

    Book  Google Scholar 

  3. Eberhard JP (2007) Architecture and the brain: a new knowledge base from neuroscience architecture. Oxford University Press, New York

    Google Scholar 

  4. Mallgrave HF (2010) Architect’s brain: neuroscience, creativity and architecture. Wiley Blackwell

    Google Scholar 

  5. Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigational network. Science 280(5365):921–924

    Article  Google Scholar 

  6. Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less travelled: distinct neural bases for route following and wayfinding in humans. Neuron 37(5):877–88

    Article  Google Scholar 

  7. Spiers HJ, Maguire EA (2006) Thoughts, behaviour and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840

    Article  Google Scholar 

  8. Spiers HJ, Maguire EA (2007) Neuroscience of remote spatial memory: a tale of two cites. Neuroscience 149(1):7–27

    Article  Google Scholar 

  9. Rauchs G, Orban P, Balteau E, Schmidt C, Degueldre C, Luxen A, Maquet P, Peigneux P (2008) Partially segregated neural networks for spatial and contextual memory in virtual navigation. Hippocampus 18(5):503–518

    Article  Google Scholar 

  10. Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114(2):340–375

    Article  Google Scholar 

  11. Ciaramelli E (2008) The role of ventromedial prefrontal cortex in navigation: a case study of impaired wayfinding and rehabilitation. Neuropsychologia 46(7):2099–2105

    Article  Google Scholar 

  12. Spiers HJ (2008) Keeping the goal in mind: prefrontal contributions to spatial navigation. Neuropsychologia 46(7):2106–2108

    Article  Google Scholar 

  13. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34(1):171–175

    Article  Google Scholar 

  14. O’Keefe (2007) The hippocampus book. Oxford University Press, Oxford

    Google Scholar 

  15. Lever C, Wills TJ, Caccuci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416(6876):90–94

    Article  Google Scholar 

  16. Taube JS, Muller RU, Ranck JB Jr (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10(2):420–435

    Google Scholar 

  17. Taube JS, Muller RU, Ranck JB Jr (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10(2):436–447

    Google Scholar 

  18. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801

    Article  Google Scholar 

  19. Verriotis M, Hayman R, Jovalekic A, Fenton AA, Jeffery KJ (2010) Anisotropic encoding of three-dimensional space by place cells and grid cells. Soc. Neurosci Abstr

    Google Scholar 

  20. Lever Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29(31):9771–9777

    Article  Google Scholar 

  21. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):680–681

    Article  Google Scholar 

  22. Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220

    Article  Google Scholar 

  23. Chown E, Kaplan S, Kortenkamp D (1995) Prototypes, location and associative networks (PLAN): towards a unified theory of cognitive mapping. Cogn Sci 19:1–52

    Article  Google Scholar 

  24. Kuipers B (1978) Modeling spatial knowledge. Cogn Sci 2:129–153

    Article  Google Scholar 

  25. Hölscher C, Brösamle M, Vrachliotis G (in press) Challenges in multilevel wayfinding: a case study with the space syntax technique. Environment and Planning B: Planning and Design, 36

    Google Scholar 

  26. Wiener JM, Büchner SJ, Hölscher C (2009) Taxonomy of human wayfinding tasks: a knowledge-based approach. Spat Cogn Comput 9:152–165

    Google Scholar 

  27. Weisman J (1981) Evaluating architectural legibility: way-finding in the built environment. Environ Behav 13:189–204

    Article  Google Scholar 

  28. Siegel AW, White SH (1975) The development of spatial representations of large-scale environments. In: Reese HW (ed) Advances in child development and behavior. vol 10. Academic, New York

    Google Scholar 

  29. Montello DR (1998) A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In: Egenhofer MJ, Golledge RG (eds) Spatial and temporal reasoning in geographic information systems. Oxford University Press, New York, pp. 143–154

    Google Scholar 

  30. Nothegger C, Winter S, Raubal M (2004) Selection of salient features for route directions. Spat Cogn Comput 4(2):113–136

    Google Scholar 

  31. Presson CC, Montello DR (1988) Points of reference in spatial cognition: stalking the elusive landmark. Br J Dev Psychol 6:378–381

    Article  Google Scholar 

  32. Sadalla EK, Magel SG (1980) The perception of traversed distance. Environ Behav 12(1):65–79

    Article  Google Scholar 

  33. Sadalla EK, Montello DR (1989) Remembering changes in direction. Environ Behav 21:346–363

    Article  Google Scholar 

  34. Hillier B (1996) Space is the machine: a configural theory of architecture. Cambridge University Press, Cambridge

    Google Scholar 

  35. Conroy Dalton R (2003) The secret is to follow your nose: route path selection and angularity. Environ Behav 35(1):107–131

    Article  Google Scholar 

  36. Turner A (2009) The role of angularity in route choice: an analysis of motorcycle courier GPS traces. In: Stewart Hornsby K, Claramunt C, Denis M, Ligozat G (eds) Spatial information theory. Lecture notes in computer science: theoretical computer science and general issues (5756). Springer, Germany, pp. 489–504

    Chapter  Google Scholar 

  37. Conroy Dalton R (2001) Spatial navigation in immersive virtual environments. Doctoral thesis, University of London

    Google Scholar 

  38. Turner A, Penn A (2002) Encoding natural movement as an agent-based system: an investigation into human pedestrian behaviour in the built environment. Environ Plan B: Plan Design 29(4):473–490

    Article  Google Scholar 

  39. Hillier B, Iida S (2005) Network and psychological effects in urban movement. In: Cohn AG, Mark DM (eds) Proceedings of spatial information theory: international conference, COSIT 2005, Ellicottsville, N.Y., U.S.A., Sept 14–18, 2005. Lecture notes in computer science. vol 3693. Springer, Berlin, pp. 475–490

    Google Scholar 

  40. Wills TJ, Caccuci F, Burgess N, O’Keefe J (2010) Development of the hippocampal map in preweanling rats. Science 328(5985):1573–1576

    Article  Google Scholar 

  41. Klippel A, Dewey C, Knauff M, Richter K, Montello DR, Freksa C, Loeliger E (2004) Direction Concepts in Wayfinding Assistance Systems. In: Jörg B, Christian K, Robert P (eds) Workshop on artificial intelligence in mobile systems (AIMS’04), SFB 378 Memo 84. Saarbrücken, pp. 1–8

    Google Scholar 

  42. Spiers HJ, Maguire EA (2007b) A navigational guidance system in the human brain. Hippocampus 17(8):618–26

    Article  Google Scholar 

  43. Hölscher C, Meilinger T, Vrachliotis G, Brösamle M, Knauff M (2006) Up the down staircase: wayfinding strategies in multi-level buildings. J Environ Psychol 26:284–299

    Article  Google Scholar 

  44. Montello D (2007) The Contribution of space syntax to a comprehensive theory of environmental psychology. Proceedings of 7th International Space Syntax Symposium, Istanbul

    Google Scholar 

  45. Muller RU, Stead M (1996) Hippocampal place cells connected by Hebbian synapses can solve spatial problems. Hippocampus 6:709–719

    Article  Google Scholar 

  46. Carlson L, Hölscher C, Shipley T, Dalton RC (in press) Getting lost in buildings. Current Directions in Psychological Science

    Google Scholar 

  47. Conroy Dalton R (2005) Space syntax and spatial cognition. In: Wu D (ed) World architecture: Space Syntax.

    Google Scholar 

  48. Gärling T, Böök A, Lindberg E (1986) Spatial orientation and wayfinding in the designed environment: a conceptual analysis and some suggestions for postoccupancy evaluation. J Archit Plan Resour 3:55–64

    Google Scholar 

  49. Hill KA (1998) Lost person behavior. National SAR secretariat. Canada

    Google Scholar 

  50. Berdik C (2009) Why humans can’t navigate out of a paper bag. New Scientist issue 2721

    Google Scholar 

  51. Hayman R, Verriotis M, Jovalekic A, Fenton A, Jeffery K (in press) Differential encoding of vertical and horizontal space by place cells and grid cells

    Google Scholar 

Download references

Acknowledgements

To Peg Rawes (Senior Lecturer, Bartlett School of Architecture, UCL) and Kate Jeffery (Professor and Director of Institute of Behavioural Neuroscience, UCL) for jointly organizing the “Spatial Thinking: visualising spatial thinking in architecture and neuroscience” one-day, interdisciplinary seminars in February 2010, which sparked off many of the ideas presented in this paper and to John O’Keefe (Professor of Cognitive Neuroscience, UCL) for some of his comments during the event, which were equally as inspirational.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.C. Dalton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Dalton, R., Hölscher, C., Spiers, H. (2015). Navigating Complex Buildings: Cognition, Neuroscience and Architectural Design. In: Gero, J. (eds) Studying Visual and Spatial Reasoning for Design Creativity. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9297-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9297-4_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9296-7

  • Online ISBN: 978-94-017-9297-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics