Skip to main content

Plant Metabolic Network

  • Chapter
  • First Online:
Book cover Plant Metabolomics
  • 1829 Accesses

Abstract

The metabolic network of plants is probably one of the most complicate network systems in nature. Traditionally, the metabolic pathways in this network are categorized as primary metabolism and secondary metabolism, with the concept that only primary metabolism is essential for the growth and development of plants. Now, it is clear that some of the secondary metabolites also possess critical functions in plants. Some of the so-called primary metabolites, such as plant growth regulators gibberellins (GA) and abscisic acid (ABA), are also synthesized from secondary pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boyle N, Morgan J. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol. 2009;3:4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants. Rockville: American Society of Plant Biologists; 2000.

    Google Scholar 

  • Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys. 2002;405:130–6.

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJ. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell. 2009;21:39–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Croteau R, Davis E, Ringer K, Wildung M. (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften. 2005;92:562–77.

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang G, Yang DS, Tang Y, Broun P, Marks MD, Sumner LW, Dixon RA, Zhao PX. TrichOME: a comparative omics database for plant trichomes. Plant Physiol. 2010;152:44–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz de la Garza RI, Gregory JF III, Hanson AD. Folate biofortification of tomato fruit. Proc Natl Acad Sci USA. 2007;104:4218–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Field B, Osbourn AE. Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Sci. 2008;320:543–7.

    Article  CAS  Google Scholar 

  • Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA. 2002;99:1092–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol. 1993;22:589–602.

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J. 1995;8:693–701.

    Article  CAS  Google Scholar 

  • Gang DR. Evolution of flavors and scents. Annu Rev Plant Biol. 2005;56:301–25.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner JC, Taylor NG, Turner SR. Control of cellulose synthase complex localization in developing xylem. Plant Cell. 2003;15:1740–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gershenzon J, McCaskill D, Rajaonarivony JIM, Mihaliak C, Karp F, Croteau R. Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem. 1992;200:130–8.

    Article  CAS  PubMed  Google Scholar 

  • Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R, Schubert K. Enhancement of folate in plants through metabolic engineering. Proc Natl Acad Sci USA. 2004;101:5158–63.

    Google Scholar 

  • Jiao Q, Yang Z, Huang J. Construction of a gene regulatory network for Arabidopsis based on metabolic pathway data. Chinese Sci Bull. 2010;55:158–62.

    Article  CAS  Google Scholar 

  • Jones MO, Perez-Fons L, Robertson FP, Bramley PM, Fraser PD. Functional characterization of long-chain prenyl diphosphate synthases from tomato. Biochem J. 2013;449:729–40.

    Article  CAS  PubMed  Google Scholar 

  • Kirchberger S, Leroch M, Huynen MA, Wahl M, Neuhaus HE, Tjaden J. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J Biol Chem. 2007;282:22481–91.

    Article  CAS  PubMed  Google Scholar 

  • Kruckeberg A, Neuhaus H, Feil R, Gottlieb L, Stitt M. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of flux control coefficients and elasticity coefficients. Biochem J. 1989;261:457–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lange BM, Ghassemian M. Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol. 2003;51:925–48.

    Article  CAS  PubMed  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science. 2003;299:902–6.

    Article  CAS  PubMed  Google Scholar 

  • Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed. 2002;9:103–11.

    Article  CAS  Google Scholar 

  • Lei L, Li S, Gu Y. Cellulose synthase complexes: Composition and regulation. Front Plant Sci. 2012;3:75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam K-H, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato. Plant Physiol. 2001;127:1256–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewinsohn E, Gijzen M. Phytochemical diversity: the sounds of silent metabolism. Plant Sci. 2009;176:161–9.

    Article  CAS  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF. A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 2001;26:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell. 2006;18:3594–605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lücker J, Bouwmeester HJ, Schwab W, Blaas J, Van Der Plas LHW, Verhoeven HA. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalool-β-D-glucopyranoside. Plant J. 2001;27:315–24.

    Article  PubMed  Google Scholar 

  • Manichaikul A, Ghamsari L, Hom EFY, Lin C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA. Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods. 2009;6:589–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mentzen W, Peng J, Ransom N, Nikolau B, Wurtele E. Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism. BMC Plant Biol. 2008;8:76.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mentzen W, Wurtele E. Regulon organization of Arabidopsis. BMC Plant Biol. 2008;8:99.

    Article  PubMed Central  PubMed  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 2000;122:1045–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olsson ME, Olofsson LM, Lindahl A-L, Lundgren A, Brodelius M, Brodelius PE. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochem. 2009;70:1123–8.

    Article  CAS  Google Scholar 

  • Peterhansel C, Niessen M, Kebeish RM. Metabolic engineering towards the enhancement of photosynthesis. Photochem Photobiol. 2008;84:1317–23.

    Article  CAS  PubMed  Google Scholar 

  • Poolman MG, Miguet L, Sweetlove LJ, Fell DA. A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol. 2009;151:1570–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rios-Estepa R, Lange BM. Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry. 2007;68:2351–74.

    Article  CAS  PubMed  Google Scholar 

  • Rios-Estepa R, Turner GW, Lee JM, Croteau RB, Lange BM. A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc Natl Acad Sci USA. 2008;105:2818–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 2002;130:1079–89.

    Article  PubMed  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature. 2004;432:779–82.

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell. 2009;21:3315–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trethewey RN. Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol. 2004;7:196–201.

    Article  CAS  PubMed  Google Scholar 

  • van Schie CCN, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC. Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J. 2007;52:752–62.

    Article  PubMed  Google Scholar 

  • Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell. 2007;19:3437–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot. 2004;93:3–11.

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP, Somerville C, Loraine A. Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol. 2006;142:762–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winkel BSJ. Metabolic channeling in plants. Annu Rev Plant Biol. 2004;55:85–107.

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Chang W-C, Xiao Y, Liu H-W, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Plant Biol. 2013;82:497–530.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Chemical Industry Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, . (2015). Plant Metabolic Network. In: Qi, X., Chen, X., Wang, Y. (eds) Plant Metabolomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9291-2_8

Download citation

Publish with us

Policies and ethics