Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 38))

  • 1911 Accesses

Abstract

In the last few years, energy harvesters have decreased in size, and at the same time increased their output power. In the last few years, energy harvesters have decreased in size, and at the same time increased their output power. These properties make energy harvesting attractive for powering wireless sensor nodes (WSNs) which are originally battery powered, with the goal of prolongating their lifetime. This chapter starts with a rough review of the main energy harvesting mechanisms, covering the thermoelectric, radio frequency (RF) and vibration based principles. For each mechanism, some representative application examples are shown, followed by possible applications of these conversion mechanisms in WSNs are presented. After that, a detailed review of the state of the art in interface circuits for vibration based energy harvesters is given. Therefore, the interface circuits are separated in two categories, one of them focusing on efficient AC/DC conversion, and the others incorporating impedance matching methods. In order to classify the major achievements of the proposed interface circuit, a list of aspects which should be fulfilled when designing general interface circuitry for energy harvesters is given. Based on this list, the major achievements of this work are then discussed. This chapter ends up with a brief description of the organization of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually, the term energy harvester or energy scavenger is used for a microscale device converting small amounts of ambient energy into electrical energy. In the broader sense, such a device is of course a generator, and sometimes is referred to as a converter or a transducer as well. In this book, the terms energy harvester and generator are used as synonyms.

References

  1. E. Abad, F. Palacio, M. Nuin, A. Zárate, A. Juarros, J.M. Gómez, S. Marco, RFID smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J. Food Eng. 93(4), 394–399 (2009)

    Article  Google Scholar 

  2. R. Amirtharajah, J. Wenck, J. Collier, J. Siebert, B. Zhou, Circuits for Energy Harvesting Sensor Signal Processing, in Proceedings of the 43rd Annual Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 July 2006, pp. 639–644

    Google Scholar 

  3. U. Bartsch, J. Gaspar, O. Paul, Characterization of the Charging and Long Term Performance of Cytop Electret Layers for MEMS Applications, in MRS Proceedings, vol 1134 (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  4. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Article  Google Scholar 

  5. S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O’Donnell, C.R. Saha, S. Roy, A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17, 1257 (2007)

    Article  ADS  Google Scholar 

  6. A.P. Chandrakasan, D.C. Daly, J. Kwong, Y.K. Ramadass, Next Generation Micro-Power Systems, in IEEE Symposium on VLSI Circuits, Digest of Technical Papers, Honolulu, Hawaii, USA, 18–20 June 2008, pp. 2–5

    Google Scholar 

  7. S. Cheng, Y. Jin, Y. Rao, D. Arnold, An active voltage doubling AC/DC converter for low-voltage energy harvesting applications. IEEE Trans. Power Electron. 26(99), 2258–2265 (2011)

    Google Scholar 

  8. J. Colomer-Farrarons, P. Miribel-Catala, A. Saiz-Vela, J. Samitier, A \(60\,\upmu \) W Low-Power Low-Voltage Power Management Unit for a Self-Powered System Based on Low-Cost Piezoelectric Powering Generators, in Proceedings of the European Solid-State Circuits Conference (ESSCIRC), Athens, Greece, 14–18 Sept 2009, pp. 280–283

    Google Scholar 

  9. E. Dallago, D. Miatton, G. Venchi, V. Bottarel, G. Frattini, G. Ricotti, M. Schipani, Active Autonomous AC-DC Converter for Piezoelectric Energy Scavenging Systems, in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 21–24 Sept 2008, pp. 555–558

    Google Scholar 

  10. R. D’hulst, Power Processing Circuits for Vibration-Based Energy Harvesters. PhD thesis, KU Leuven, 2009

    Google Scholar 

  11. J. Eakburanawat, I. Boonyaroonate, Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique. Appl. Energy 83(7), 687–704 (2006)

    Article  Google Scholar 

  12. EnOcean, Product Image of PTM 200 Group. http://www.enocean.com/en/product-images/. Accessed 17 May 2014

  13. P. Fiorini, I. Doms, C. Van Hoof, R. Vullers, Micropower Energy Scavenging, in Proceedings of the 34th European Solid-State Circuits Conference (ESSCIRC), Edinburgh, Scotland, United Kingdom, 15–19 Sept 2008, pp. 4–9

    Google Scholar 

  14. T. Galchev, J. McCullagh, R.L. Peterson, K. Najafi, A Vibration Harvesting System for Bridge Health Monitoring Applications, in Proceedings of the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Leuven, Belgium, 30 Nov–3 Dec 2010, pp. 179–182

    Google Scholar 

  15. F. Goldschmidtboeing, P. Woias, Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. 18(104), 013 (2008)

    Google Scholar 

  16. D. Guyomar, G. Sebald, S. Pruvost, M. Lallart, A. Khodayarii, C. Richard, Energy harvesting from ambient vibrations and heat. J. Intell. Mater. Syst. Struct. 20(5), 609–624 (2009)

    Article  Google Scholar 

  17. T. Hehn, F. Hagedorn, D. Maurath, D. Marinkovic, I. Kuehne, A. Frey, Y. Manoli, A fully autonomous integrated interface circuit for piezoelectric harvesters. IEEE J. Solid-State Circ. 47(9), 2185–2198 (2012)

    Article  Google Scholar 

  18. D. Hoffmann, B. Folkmer, Y. Manoli, Fabrication, characterization and modelling of electrostatic micro-generators. J. Micromech. Microeng. 19(094), 001 (2009)

    Google Scholar 

  19. E. Koutroulis, K. Kalaitzakis, N.C. Voulgaris, Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Trans. Power Electron. 16(1), 46–54 (2001)

    Article  Google Scholar 

  20. I. Kuehne, M. Schreiter, H. Seidel, A. Frey, Optimum Design of a Piezoelectric Mems Generator for Fluid-Actuated Energy Harvesting, in Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 23–27 Jan 2011, pp. 1317–1320

    Google Scholar 

  21. D. Kwon, G.A. Rincón-Mora, A Rectifier-Free Piezoelectric Energy Harvester Circuit, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Taipei, Taiwan, 24–27 May 2009, pp. 1085–1088

    Google Scholar 

  22. D. Kwon, G.A. Rincon-Mora, A Single-Inductor AC–DC Piezoelectric Energy-Harvester/Battery-Charger IC Converting \({\pm }\)(0.35 to 1.2 V) to (2.7 to 4.5 V), in IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, San Francisco, CA, USA, 7–11 Feb 2010, pp. 494–495

    Google Scholar 

  23. T.T. Le, J. Han, A. von Jouanne, K. Mayaram, T.S. Fiez, Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circ. 41(6), 1411–1420 (2006)

    Article  Google Scholar 

  24. E. Lefeuvre, A. Badel, A. Benayad, L. Lebrun, C. Richard, D. Guyomar, A comparison between several approaches of piezoelectric energy harvesting. J. de Phys. IV Fr. 28, 177–186 (2005)

    Article  Google Scholar 

  25. J. Liang, W.H. Liao, An Improved Self-Powered Switching Interface for Piezoelectric Energy Harvesting, in Proceedings of the IEEE International Conference on Information and Automation (ICIA), Zhuhai, China, 22–25 June 2009, pp. 945–950

    Google Scholar 

  26. C. Lu, C.Y. Tsui, W.H. Ki, Vibration energy scavenging system with maximum power tracking for micropower applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(99), 1–11 (2011)

    Google Scholar 

  27. M. Malinowski, M. Moskwa, M. Feldmeier, M. Laibowitz, J. Paradiso, CargoNet: A Low-Cost Micropower Sensor Node Exploiting Quasi-Passive Wakeup for Adaptive Asynchronous Monitoring of Exceptional Events, in Proceedings of the International Conference on Embedded Networked Sensor Systems (SenSys), Sydney, Australia, 4–9 Nov 2007, pp. 145–159

    Google Scholar 

  28. D. Maurath, P.F. Becker, D. Spreemann, Y. Manoli, Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking. IEEE J. Solid-State Circ. 47(6), 1369–1380 (2012)

    Article  Google Scholar 

  29. Micropelt, MPG-D751 Datasheet. http://www.micropelt.com/down/datasheet_mpg_d751.pdf. Accessed 17 May 2014

  30. G.K. Ottman, H.F. Hofmann, A.C. Bhatt, G.A. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17(5), 669–676 (2002)

    Article  Google Scholar 

  31. G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18(2), 696–703 (2003)

    Article  Google Scholar 

  32. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4(1), 18–27 (2005)

    Article  Google Scholar 

  33. C. Peters, J. Handwerker, D. Maurath, Y. Manoli, A sub-500 mv highly efficient active rectifier for energy harvesting applications. IEEE Trans. Circ. Syst. I: Regul. Pap. 58(7), 1542–1550 (2011)

    Article  MathSciNet  Google Scholar 

  34. V. Pop, J. van de Molengraft, F. Schnitzler, J. Penders, R. van Schaijk, R. Vullers, Power Optimization for Wireless Autonomous Transducer Solutions, in Proceedings of the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Sendai, Japan, 9–12 Nov 2008, pp. 141–144

    Google Scholar 

  35. J. Rabaey, J. Ammer, B. Otis, F. Burghardt, Y.H. Chee, N. Pletcher, M. Sheets, H. Qin, Ultra-low-power design. IEEE Circ. Devices Mag. 22(4), 23–29 (2006)

    Article  Google Scholar 

  36. Y.K. Ramadass, A.P. Chandrakasan, An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid-State Circ. 45(1), 189–204 (2010)

    Article  Google Scholar 

  37. V. Rouet, K. Moreau, B. Foucher, Embedded Prognostics and Health Monitoring Systems, in Proceedings of the 2nd Electronics System-Integration Technology Conference, Greenwich, London, United Kingdom, 1–4 Sept 2008, pp. 79–84

    Google Scholar 

  38. S. Roundy, P.K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1142 (2004)

    Article  ADS  Google Scholar 

  39. S. Roundy, P. Wright, Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations (Kluwer Academic Publishers, New York, 2004)

    Book  Google Scholar 

  40. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, V. Sundararajan, Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4(1), 28–36 (2005)

    Article  Google Scholar 

  41. D. Spreemann, D. Hoffmann, B. Folkmer, Y. Manoli, Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration. J. Micromech. Microeng. 18(104), 001 (2008)

    Google Scholar 

  42. Y. Sun, H. Nguyen, C. Jeong, S. Lee, An integrated high performance active rectifier for piezoelectric vibration energy harvesting systems. IEEE Trans. Power Electron. 27(99), 623–627 (2012)

    Article  Google Scholar 

  43. Y.K. Tan, J.Y. Lee, S.K. Panda, Maximize Piezoelectric Energy Harvesting Using Synchronous Charge Extraction Technique for Powering Autonomous Wireless Transmitter, in Proceedings of the IEEE International Conference on Sustainable Energy Technologies (ICSET), Singapore, 24–27 Nov 2008, pp. 1123–1128

    Google Scholar 

  44. L. Tang, Y. Yang, Analysis of synchronized charge extraction for piezoelectric energy harvesting. Smart Mater. Struct. 20(085), 022 (2011)

    Google Scholar 

  45. L. Tang, Y. Yang, Y.K. Tan, S.K. Panda, Applicability of Synchronized Charge Extraction Technique for Piezoelectric Energy Harvesting, in Proceedings of Active and Passive Smart Structures and Integrated Systems, San Diego, CA, USA, 6–10 Mar 2011, Proceedings of SPIE, vol 7977, p. 79770I

    Google Scholar 

  46. T. Ungan, L.M. Reindl, Harvesting Low Ambient RF-Sources for Autonomous Measurement Systems, in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC), Victoria, Vancouver, BC, Canada, 12–15 May 2008, pp. 62–65

    Google Scholar 

  47. US Department of Transportation, TREAD Act 49 CFR Part 57. http://www.nhtsa.gov/cars/rules/rulings/TirePresFinal/Index.html. Accessed 17 May 2014

  48. H.J. Visser, A.C.F. Reniers, J.A.C. Theeuwes, Ambient RF Energy Scavenging: GSM and WLAN Power Density Measurements, in Proceedings of the 38th European Microwave Conference (EuMC), Amsterdam, The Netherlands, 28–30 Oct 2008, pp. 721–724

    Google Scholar 

  49. R.J.M. Vullers, R.V. Schaijk, H.J. Visser, J. Penders, C.V. Hoof, Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circ. Mag. 2(2), 29–38 (2010)

    Article  Google Scholar 

  50. P. Woias, Y. Manoli, T. Nann, F. Stetten, Energy harvesting for autonomous microsystems. MST News 4, 42 (2005)

    Google Scholar 

  51. S. Xu, K.D.T. Ngo, T. Nishida, G.B. Chung, A. Sharma, Low frequency pulsed resonant converter for energy harvesting. IEEE Trans. Power Electron. 22(1), 63–68 (2007)

    Article  Google Scholar 

  52. B.C. Yen, J.H. Lang, A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circ. Syst. I: Regul. Pap. 53(2), 288–295 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hehn .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hehn, T., Manoli, Y. (2015). Introduction. In: CMOS Circuits for Piezoelectric Energy Harvesters. Springer Series in Advanced Microelectronics, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9288-2_1

Download citation

Publish with us

Policies and ethics