Advertisement

Gibberellin Signaling in Plant Innate Immunity

  • P. Vidhyasekaran
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 2)

Abstract

Gibberellins (GA) are important plant growth hormones involved in plant innate immunity. GA modulates plant defense responses, mostly by regulating SA–JA–ET signaling systems, which form the backbone of the immune system. Key components in the GA signaling pathway include the GA receptor GID1, the DELLA proteins, and the F-box proteins. Upon GA binding, the GA-dependent conformational change causes the GID1 N-terminal helical lid domain to behave like “molecular glue” to form the GA–GID1–DELLA complex. DELLAs repress GA-dependent defense responses, whereas GA relieves their repressive activity. GA lifts DELLA repression by targeting DELLA for destruction via the ubiquitin–proteasome pathway. GA modulates plant disease resistance or susceptibility by inducing the degradation of DELLA proteins. GA interacts antagonistically with JA signaling to modulate plant immunity. GA attenuates the expression of several JA-responsive genes. Brassinosteroids (BR) have been shown to negatively regulate innate immune responses induced by GAs. BR and GA cause ‑cross-inhibitory effects on the reciprocal hormone biosynthesis pathways to interact in a mutually antagonistic manner. GA is also involved in triggering systemic acquired resistance (SAR). Pathogen triggers overexpression of DELLA proteins to suppress GA-regulated defense responses.

Keywords

Salicylic Acid Jasmonic Acid DELLA Protein Jasmonic Acid Signaling Systemic Acquire Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shut down DELLA proteins. J Exp Bot 60:1085–1092PubMedCrossRefGoogle Scholar
  2. Alonso-Ramirez A, Rodriguez D, Reyes D, Jimėnez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedCentralCrossRefGoogle Scholar
  4. Busov V, Meilan R, Pearce DW, Rood SB, Ma C, Tschaplinski TJ, Strauss SH (2006) Transgenic modification of gai and rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles on Populus. Planta 224:288–299PubMedCrossRefGoogle Scholar
  5. Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol 142:509–525PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cernadas RA, Benedetti CE (2009) Role of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by Xanthomonas axonopodis pv. citri. Plant Sci 177:190–195CrossRefGoogle Scholar
  7. Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chandler PM, Harding CA, Ashton AE, Mulcair MD, Dixon NE, Mander LN (2008) Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.). Mol Plant 1:285–294PubMedCrossRefGoogle Scholar
  9. Cheng Z, Sun L, Qi T, Zhang B, Peng W, Liu Y, Xie D (2011) The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol Plant 4:279–288CrossRefGoogle Scholar
  10. Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lόpez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671PubMedCrossRefGoogle Scholar
  11. Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145PubMedPubMedCentralCrossRefGoogle Scholar
  12. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signaling in plant responses to abiotic stress. J Exp Biol 217:67–75PubMedCrossRefGoogle Scholar
  13. Dai C, Xue H-W (2010) Rice early flowering1, a CK1, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signaling. EMBO J 29:1916–1927PubMedPubMedCentralCrossRefGoogle Scholar
  14. Daviẻre J-M, Achard P (2013) Development at a glance. Gibberellin signaling in plants. Development 140:1147–1151PubMedCrossRefGoogle Scholar
  15. de Lucas M, Daviẻre JM, Rodriguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484PubMedCrossRefGoogle Scholar
  16. De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi I-R, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A 98:14162–14167PubMedCentralCrossRefGoogle Scholar
  18. Dill A, Thomas SG, Hu J, Steber CM, Sun TP (2004) The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392–1405PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Karzan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245PubMedPubMedCentralCrossRefGoogle Scholar
  20. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schafer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715PubMedPubMedCentralCrossRefGoogle Scholar
  22. Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6:7–12CrossRefGoogle Scholar
  23. Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743PubMedCrossRefGoogle Scholar
  24. Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:826–834CrossRefGoogle Scholar
  25. Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hartweck LM (2006) Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell 18:278–282PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hauvermale AL, Ariizumi T, Steber CM (2012) Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol 160:83–92PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2010) Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22:2680–2696PubMedCentralCrossRefGoogle Scholar
  29. Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M (2012) The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J 71:443–453PubMedGoogle Scholar
  30. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hou X, Hu WW, Shen L, Lee IY, Tao Z, Han JH, Yu H (2008) Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiol 147:1126–1142PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894PubMedCrossRefGoogle Scholar
  33. Howe GA (2010) Ubiquitin ligase-coupled receptors extend their reach to jasmonate. Plant Physiol 154:471–474PubMedPubMedCentralCrossRefGoogle Scholar
  34. Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70PubMedPubMedCentralCrossRefGoogle Scholar
  35. Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008) Molecular biology of gibberellins in higher plants. Int Rev Cell Mol Biol 268:191–221PubMedCrossRefGoogle Scholar
  36. Iuchi S, Suzuki H, Kim Y-C, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M (2007) Multiple loss of function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J 50:958–966CrossRefGoogle Scholar
  37. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant. doi: 10.1093/mp/sss128
  38. Laurie-Berry N, Joardar V, Street JH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800PubMedCrossRefGoogle Scholar
  39. Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638CrossRefGoogle Scholar
  40. Liu P-P, von Dahl CC, Klessig DF (2011a) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226PubMedPubMedCentralCrossRefGoogle Scholar
  41. Liu P-P, von Dahl CC, Park S-W, Klessig DF (2011b) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155:1762–1768PubMedCentralCrossRefGoogle Scholar
  42. Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950PubMedPubMedCentralCrossRefGoogle Scholar
  43. McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber C (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15:1120–1130PubMedPubMedCentralCrossRefGoogle Scholar
  44. Murase K, Hirano Y, Sun T, Hakoshima T (2008) Gibberellin-induced DELLA recognition by gibberellin receptor GID1. Nature 456:459–463PubMedCrossRefGoogle Scholar
  45. Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46:880–889PubMedCrossRefGoogle Scholar
  46. Naseem M, Dandekar T (2012) The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog 8(11):e1003026. doi: 10.1371/journal ppat 1003026 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Naseem M, Philippi N, Hussain A, Wangorsch G, Ahmed N, Dandekar T (2012) Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk by cytokinin. Plant Cell 24:1793–1814PubMedPubMedCentralCrossRefGoogle Scholar
  48. Návarová H, Bernsdorff F, Döring A-C, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141PubMedPubMedCentralCrossRefGoogle Scholar
  49. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDJ (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  50. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655PubMedCrossRefGoogle Scholar
  51. Niu Y, Figueroa P, Browse J (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62:2143–2154PubMedPubMedCentralCrossRefGoogle Scholar
  52. Olszewski N, Sun T-P, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80PubMedPubMedCentralGoogle Scholar
  53. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3080–3100CrossRefGoogle Scholar
  54. Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521PubMedCrossRefGoogle Scholar
  55. Qi T, Huang H, Wu D, Qi Y, Song S, Xie D (2014) Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26:1118–1133PubMedCrossRefGoogle Scholar
  56. Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact 26:227–239PubMedCrossRefGoogle Scholar
  57. Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379PubMedCrossRefGoogle Scholar
  58. Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343PubMedCrossRefGoogle Scholar
  59. Schwechheimer C (2012) Gibberellin signaling in plants – the extended version. Front Plant Sci 2:Article 2. doi: 10.3389/ftpls.2011.00107
  60. Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:Article 30. doi: 10.3389/fpls.2013.00030 CrossRefGoogle Scholar
  61. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405PubMedPubMedCentralCrossRefGoogle Scholar
  62. Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J 48:390–402PubMedCrossRefGoogle Scholar
  63. Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456:520–523PubMedCrossRefGoogle Scholar
  64. Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP (2007) Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiol 143:987–1000PubMedPubMedCentralCrossRefGoogle Scholar
  65. Sun X, Jones WT, Harvey D, Edwards PJ, Pascal SM, Kirk C, Considine T, Sheerin DJ, Rakonjac J, Oldfield CJ, Xue B, Dunker AK, Uversky VN (2010) N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors. J Biol Chem 285:11557–115571PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sun X, Jones WT, Rikkerink EH (2012) GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signaling. Biochem J 442:1–12CrossRefGoogle Scholar
  67. Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46(1):34–53CrossRefGoogle Scholar
  68. Thomas SG, Sun T-P (2004) Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol 135:668–676PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YJ, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698PubMedCrossRefGoogle Scholar
  70. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ueguchi-Tanaka M, Hirano K, Hasegawa Y, Kitano H, Matsuoka M (2008) Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell 20:2437–2446PubMedPubMedCentralCrossRefGoogle Scholar
  72. Vidhyasekaran P (2014) PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht, pp 442CrossRefGoogle Scholar
  73. Wager A, Browse J (2012) Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front Plant Sci 3:Article 41CrossRefGoogle Scholar
  74. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058PubMedCentralCrossRefGoogle Scholar
  75. Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:67–100CrossRefGoogle Scholar
  76. Wild M, Daviẻre JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319PubMedPubMedCentralCrossRefGoogle Scholar
  77. Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EM, Maier A, Schwechheimer C (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209–1220PubMedCentralCrossRefGoogle Scholar
  78. Willige BC, Isono E, Richter R, Zourelidon M, Schwechheimer C (2011) Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23:2184–2195PubMedPubMedCentralCrossRefGoogle Scholar
  79. Xia Y, Navarre D, Seebold K, Kachroo A, Kachroo P (2010) The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol 154:833–846PubMedPubMedCentralCrossRefGoogle Scholar
  80. Xu Y-L, Li L, Gage DA, Zeevaart JAD (1999) Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11:927–935PubMedCentralCrossRefGoogle Scholar
  81. Xu YH, Zhu YY, Zhou HC, Li Q, Sun ZX, Liu YG, Lin HX, He ZH (2004) Identification of a 98-kb DNA segment containing the rice Eui gene controlling uppermost internode elongation, and construction of a TAC transgene sublibrary. Mol Genet Genomics 272:149–155PubMedCrossRefGoogle Scholar
  82. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251PubMedCrossRefGoogle Scholar
  83. Yang DL, Li Q, Deng Y-W, Lou Y-G, Wang M-Y, Zhou G-X, Zhang Y-Y, He Z-H (2008) Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537PubMedCrossRefGoogle Scholar
  84. Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng W, Lee CM, Thomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 109:E1192–E1200PubMedPubMedCentralCrossRefGoogle Scholar
  85. Yang D-L, Yang Y, He Z (2013) Roles of plant hormones and their interplay in rice immunity. Mol Plant 6:675–683PubMedCrossRefGoogle Scholar
  86. Zhang ZL, Ogawa M, Fleet CM, Zentella R, Hu J, Heo JO, Lim J, Kamiya J, Yamaguchi S, Sun TP (2011) Scarecrow-like3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc Natl Acad Sci U S A 108:2160–2165PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, Li Y (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945PubMedPubMedCentralCrossRefGoogle Scholar
  88. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. Vidhyasekaran
    • 1
  1. 1.Plant PathologyTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations