Skip to main content

Abscisic Acid Signaling System in Plant Innate Immunity

  • Chapter
  • First Online:

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 2))

Abstract

Abscisic acid is a plant hormone involved in immune signal transduction system, and it positively or negatively regulates the plant immune system. On the perception of pathogen-associated molecular pattern (PAMP) signals, ABA biosynthesis pathway is activated and ABA accumulates in the infected tissues. The ABA signaling complex includes PYR/PYL/RCAR (an ABA receptor), the type 2C protein phosphatase (PP2C, a negative regulator), and SNF1-related protein kinase (SnRK2, a positive regulator). Binding of ABA to the receptor induces a conformational change in the receptor that allows it to sequester the PP2Cs. This excludes the PP2Cs from the negative regulation of the downstream SnRK2-activated kinases which phosphorylate and activate downstream transcription factors. Phosphorylation of the transcription factors initiates the transcription of ABA-responsive promoter elements. ABA regulates the expression of several genes involved in host defense responses. The cis-regulatory elements responsible for the ABA regulation of gene expression share a conserved motif, ACGTGGC, which is known as ABA-responsive element (ABRE). ABRE appears in the promoters of many defense genes. The bZIP-type transcription factors bind ABRE and transactivate downstream gene expression. Transcription factors perceive signals relayed by signaling molecules and translate into a functional response through recruiting or releasing RNA polymerase II (RNAPII). MEDIATOR25 (MED25), a cofactor of RNAPII, acts as a bridge between RNAPII and DNA-binding transcription factors and regulates ABA-triggered gene transcription. ABA has been shown to be a complex modulator of various plant hormone signaling systems in triggering or suppressing host defense responses. Synergistic and antagonistic interaction between ABA and JA, SA, and ET in the modulation of plant immune system has been widely reported. ABA and JA signaling pathways may be interconnected, and they may act cooperatively in the induction of defense genes. ABA may also suppress JA-activated transcription of defense genes in some plant–pathogen interactions. ABA may suppress SA biosynthesis and SA-mediated defense responses. ABA signaling system suppresses SA signaling system and vice versa. In some plant–pathogen interactions, ABA signaling may act synergistically with SA signaling in triggering plant immune responses. ABA activates ethylene biosynthesis, while ethylene activates ABA biosynthesis. Synergistic and antagonistic interaction between ABA and ethylene signaling systems has also been reported. ABA induces resistance against many necrotrophic pathogens, while it negatively regulates defense responses against biotrophic pathogens (with a few exceptions). ABA has been shown to promote susceptibility or resistance against bacterial pathogens, and ABA plays positive roles during early stages and negative roles at later stages of bacterial infection. ABA signaling induces resistance or susceptibility against virus diseases. Different ABA signaling pathway components may decide induction or suppression of defense responses against virus diseases. ABA may regulate host defense responses either positively or negatively through its direct or indirect action on the plant innate immune system. ABA may suppress plant immune responses and induce susceptibility. Pathogens may hijack ABA signaling pathway to cause disease. Pathogens may secrete toxins/effectors and suppress ABA-dependent defense responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki Y (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    PubMed  CAS  PubMed Central  Google Scholar 

  • Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and abscisic acid in the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:179–186

    Google Scholar 

  • Adie BA, Perez-Perez J, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    CAS  PubMed Central  Google Scholar 

  • Alazem M, Lin K-Y, Lin N-S (2014) The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol Plant Microbe Interact 27:177–189

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    CAS  Google Scholar 

  • An C, Mou Z (2013) The function of the Mediator complex in plant immunity. Plant Signal Behav 8:e23182

    PubMed  PubMed Central  Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    PubMed  CAS  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    PubMed  CAS  PubMed Central  Google Scholar 

  • Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL (2012) Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980

    PubMed  CAS  PubMed Central  Google Scholar 

  • Asselbergh B, Höfte M (2007) Basal tomato defences to Botrytis cinerea include abscisic acid-dependent callose formation. Physiol Mol Plant Pathol 71:33–40

    CAS  Google Scholar 

  • Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    PubMed  CAS  PubMed Central  Google Scholar 

  • Asselbergh B, Achuo AE, Höfte M, Van Gijsegem F (2008a) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24

    PubMed  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008b) Global switches and fine-tuning ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    PubMed  CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Höfte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bailey TA, Zhou X, Chen J, Yang Y (2009) Role of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance. In: Wang GL, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, Dordrecht, pp 185–190

    Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brault M, Amiar Z, Pennarun A-M, Monestiez M, Zhang Z, Cornel D, Dellis O, Knight H, Bouteau F, Rona J-P (2004) Plasma membrane depolarization induced by abscisic acid in Arabidopsis suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca2+ dependent. Plant Physiol 135:231–243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    CAS  Google Scholar 

  • Broekaert WF, Delaure SI, De Bolle MFC, Commue BPA (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    CAS  Google Scholar 

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defenses in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    PubMed  CAS  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant-pathogen interactions. J Plant Res 124:489–499

    PubMed  CAS  Google Scholar 

  • Casaretto J, Ho TD (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271–284

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen N, Goodwin PH, Hsiang T (2003) The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot 54:2449–2456

    PubMed  CAS  Google Scholar 

  • Chen Y, Fangfang JI, Xie H, Liang J (2006) Overexpression of the regulator of G-protein signalling protein enhances ABA-mediated inhibition of root elongation and drought tolerance in Arabidopsis. J Exp Bot 57:2101–2110

    PubMed  CAS  Google Scholar 

  • Chen Y-H, Hu L, Punta M, Bruni R, Hillerich B, Kloss B, Rost B, Love J, Siegelbaum SA, Hendrickson WA (2010) Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467:1074–1080

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 110(21):E1983–1971. doi:10.1073/pnas.1221347110

    Google Scholar 

  • Cheng S-H, Sheen J, Gerrish C, Bolwell GP (2001) Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503:185–188

    CAS  Google Scholar 

  • Cheng WH, Chiang MH, Hwang SG, Lin PC (2009) Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol 71:61–80

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chern M, Canlas PE, Ronald PC (2008) Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repressive domain. Mol Plant 1:552–559

    PubMed  CAS  Google Scholar 

  • Choi DS, Hwang BK (2012) Proteomics and functional analyses of pepper Abscisic acid-responsive1 (ABR1), which is involved in cell death and defense signalling. Plant Cell 23:823–842

    Google Scholar 

  • Choi H-L, Park H-J, Park JJ, Kim S, Im M-Y, Seo H-H, Kim Y-W, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christmann A, Grill E (2009) Are GTGs ABA’s biggest fans? Cell 136:21–23

    PubMed  CAS  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    PubMed  CAS  Google Scholar 

  • Chung F, Park JM, Oh SK, Joung YH, Lee S, Choi D (2004) Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220:286–295

    PubMed  CAS  Google Scholar 

  • Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C (2002) Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. Plant Cell 14:2369–2381

    CAS  PubMed Central  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Frelaldenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    CAS  Google Scholar 

  • Curvers K, Seifi H, Mouille G, de Rycke R, Asselbergh B, Van Hecke A, Vanderschaeghe D, Höfte H, Callewaert N, Van Brueusegem F, Höfte M (2010) Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiol 154:847–860

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cutler SR, Rodríguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    PubMed  CAS  Google Scholar 

  • Danquash A, de Zelicourt A, Colcombet J, Hirt H (2013) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. doi:10.1016/j.biotechadv.2013.09.006

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    CAS  Google Scholar 

  • Denancě N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4; Article 155:1–12. doi:10.3389/fpls 2013.00155

    Google Scholar 

  • Desikan R, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    CAS  PubMed Central  Google Scholar 

  • Desikan R, Cheung M-K, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212

    PubMed  CAS  Google Scholar 

  • de Torres M, Mansfield JW, Grabov N, Brown IR, Ammouneh H, Tsiamis G, Forsyth A, Robatzek S, Grant M, Boch J (2006) Pseudomonas syringae effector AvrPtroB suppresses basal defence in Arabidopsis. Plant J 47:368–382

    PubMed  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443

    PubMed  PubMed Central  Google Scholar 

  • de Torres-Zabala M, Bennett MH, Truman WH, Grant MR (2009) Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defense responses. Plant J 59:375–386

    PubMed  Google Scholar 

  • De Vleesschauwer D, Yang Y, Vera Cruz C, Höfte M (2010) Abscisic acid –induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol 152:2036–2052

    PubMed  PubMed Central  Google Scholar 

  • Distéfano AM, Scuffi D, Garcia-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907

    PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    PubMed  CAS  Google Scholar 

  • Ebel J, Mithofer A (1998) Early events in the elicitation of plant defence. Planta 206:335–348

    CAS  Google Scholar 

  • Eckardt NA (2004) Abscisic acid signal transduction: function of G protein-coupled receptor 1 in Arabidopsis. Plant Cell 16:1353–1354

    CAS  PubMed Central  Google Scholar 

  • Endo A, Koshiba T, Kamiya Y, Nambara E (2008) Vascular system is a node of systemic stress responses. Plant Signal Behav 3:1138–1140

    PubMed  PubMed Central  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fan LM, Zhang W, Chen J-G, Taylor JP, Jones AM, Assmann SM (2008) Abscisic acid regulation of guard cell K+ and anion channels in Gβ and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci U S A 105:8476–8481

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trèmousaygue D, Deslandes L, Marco Y (2012) Biological control of bacterial wilt in Arabidopsis thaliana involves abscisic acid signalling. New Phytol 194:1035–1045

    PubMed  CAS  Google Scholar 

  • Flors V, Ton J, Jakab G, Mauch-Mani B (2005) Abscisic acid and callose: team players in defence against pathogens? J Phytopathol 153:377–383

    CAS  Google Scholar 

  • Flors V, Ton J, van Doorn R, Garcia-Agustin P, Mauch-Mani B (2008) Interplay between JA, SA, and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92

    PubMed  CAS  Google Scholar 

  • Fraser RSS, Whenham RJ (1989) Abscisic-acid metabolism in tomato plants infected with tobacco mosaic virus – relationships with growth, symptoms and the Tm-1 gene for TMV resistance. Physiol Mol Plant Pathol 34:212–226

    Google Scholar 

  • Fujii H, Verslues PE, Zhu J-K (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    CAS  PubMed Central  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    CAS  PubMed Central  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito I, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 kinases are the main positive regulators of abscisic acid signalling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    PubMed  CAS  Google Scholar 

  • Furihata T, Manuyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouché N, Knight MR, Fromm H (2010a) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232:165–178

    PubMed  CAS  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010b) Calcium-regulated transcription in plants. Mol Plant 3:653–669

    PubMed  CAS  Google Scholar 

  • Gao Y, Zeng Q, Guo J, Cheng J, Ellis BE, Jin-Gui C (2007) Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J 52:1001–1013

    PubMed  CAS  Google Scholar 

  • Gao Y, Li T, Liu Y, Ren C, Zhao Y, Wang M (2010a) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 37:3957–3965

    PubMed  CAS  Google Scholar 

  • Gao Y, Li T, Zhao Y, Ren C, Liu Y, Wang M (2010b) Cloning and characterization of a G protein β subunit gene responsive to plant hormones and abiotic stresses in Brassica napus. Plant Mol Biol Rep 28:450–459

    CAS  Google Scholar 

  • Garcia-Andrade J, Ramirez V, Flors V, Vera P (2011) Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. Plant J 67:783–794

    PubMed  CAS  Google Scholar 

  • Gayatri D, Agurla S, Raghavendra AS (2013) Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front Plant Sci 4:425

    PubMed  PubMed Central  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106:21425–21430

    PubMed  CAS  PubMed Central  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A 107:8023–8028

    CAS  PubMed Central  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902–1914

    PubMed  CAS  Google Scholar 

  • Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriguez FL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AAR, Vattanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grennan AK (2008) Ethylene response factors in jasmonate signaling and defense response. Plant Physiol 146:1457–1458

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    PubMed  CAS  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    PubMed  CAS  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149:1017–1027

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guimarães RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711

    PubMed  PubMed Central  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway; new insights. Curr Opin Plant Biol 7:40–49

    PubMed  CAS  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    PubMed  CAS  Google Scholar 

  • Guo L, Yu Y, Law JA, Zhang X (2010) SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci U S A 107:18557–18562

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guo J, Yang X, Weston DJ, Chen J-G (2011) Abscisic acid receptors: past, present and future. J Integr Plant Biol 53:469–479

    PubMed  CAS  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    PubMed  CAS  Google Scholar 

  • Hamada H, Kurusu T, Okuma E, Nokajima H, Kiyoduka M, Koyano T, Sugiyama Y, Okada K, Koga J, Saji H, Miyao A, Hirochika H, Yamane H, Murata Y, Kuchitsu K (2012) Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J Biol Chem 287:9931–9939

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hamilton DWA, Hills A, Köhler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci U S A 97:4967–4972

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs – a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Eckert C, Anschūtz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J (2012) Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Biol Chem 287:7956–7968

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hauser SY, Waadt R, Schroeder JJL (2011) Evolution of abscisic acid synthesis and signalling mechanism. Curr Biol 21:R346–R355

    PubMed  CAS  PubMed Central  Google Scholar 

  • He H, Li J (2008) Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves. Biochem Biophys Res Commun 371:883–888

    PubMed  CAS  Google Scholar 

  • Henfling JWDM, Bostock R, Kuc J (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70:1074–1078

    CAS  Google Scholar 

  • Hernández-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sánchez-Rodriguez C, Anderson LK, Somerville S, Marco Y, Molina A (2007) Impairment of cellulose synthase required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903

    PubMed  PubMed Central  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158:759–776

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    PubMed  CAS  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription factor. Proc Natl Acad Sci U S A 96:15348–15353

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol 156:430–438

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hu J, Wang Y, Zhang X, Lloyd JR, Li JH, Karpiak J, Costanzi S, Wess J (2010) Structural basis of G protein-coupled receptor – G protein interactions. Nat Chem Biol 6:541–548

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hubbard KE, Siegel RS, Valerio G, Brandt B, Schroeder JI (2012) Abscisic acid and CO2 signaling via calcium sensitivity in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus–response analyses. Ann Bot 109:5–17

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hung KT, Cheng DG, Hsu YT, Kao CH (2008) Abscisic acid-induced hydrogen peroxide is required for anthocyanin accumulation in leaves of rice seedlings. J Plant Physiol 165:1280–1287

    PubMed  CAS  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid is involved in chitosan-induced resistance to Tobacco necrosis virus (TNV). Plant Physiol Biochem 46:1106–1111

    PubMed  CAS  Google Scholar 

  • Islam MM, Tani C, Watanabe-Sugimoto M, Uraji M, Jahan MS, Masuda C, Nakamura Y, Mori IC, Murata Y (2009) Myrosinases, TGG1 and TGG2 redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. Plant Cell Physiol 50:1171–1175

    PubMed  CAS  Google Scholar 

  • Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y (2010) Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca2+-dependent protein kinase is important for substrate recognition. Plant Cell 22:1592–1604

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Lee S, Cho D, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signalling. Proc Natl Acad Sci U S A 106:20520–20525

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jammes F, Yang X, Xiao S, Kwak JM (2011) Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav 6:1875–1877

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jang J-H, Lee CS, Hwang D, Ryu SH (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 51:71–81

    PubMed  CAS  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signaling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    PubMed  CAS  Google Scholar 

  • Jeworutzki E, Roelfsema MR, Anschütz U, Krol E, Elzenga JT, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62:367–378

    PubMed  CAS  Google Scholar 

  • Jiang C-J, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23:791–798

    PubMed  CAS  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    PubMed  PubMed Central  Google Scholar 

  • Johnston CA, Temple BR, Chen J-G, Gao Y, Moriyama EN, Jones AM, Siderovski DP, Willard FS (2007) Comment on “A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science 318:914c

    Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) Abscisic acid signal off the STARTing block. Mol Plant. doi:10.1093/mp/ssr055

  • Kaliff M, Staal J, Myrenas M, Dixelius C (2007) ABA is required for Leptosphaeria maculans resistance via ABI- and ABI4-dependent signaling. Mol Plant Microbe Interact 20:335–345

    PubMed  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000) Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol Mol Plant Pathol 57:255–268

    CAS  Google Scholar 

  • Kang J, Hwang J, Lee M, Kim Y, Assmann SM, Martinola L, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 10:2733–2748

    Google Scholar 

  • Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K (2011) Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 22:741–748

    PubMed  CAS  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signaling of the defence response to microbial pathogens. J Exp Bot. doi:10.1093/jxb/eru109

  • Kim SY, Thomas TL (1998) A family of novel basic leucine zipper proteins bind to seed-specification elements in the carrot Dc3 gene promoter. J Plant Physiol 152:607–613

    CAS  Google Scholar 

  • Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251

    PubMed  CAS  Google Scholar 

  • Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Heu S, Park SY, Lee YH, Jwa NS (2003) Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun 300:858–876

    Google Scholar 

  • Kim T-W, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim T, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2 and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim TH, Hauser F, Ha T, Xue S, Böhmer M, Nishimura N, Munemasa S, Hubbard K, Peine N, Lee BH, Lee S, Robert N, Parker JE, Schroeder JI (2011) Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Curr Biol 21:990–997

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kline KG, Sussman MR, Jones AM (2010) Abscisic acid receptors. Plant Physiol 154:479–482

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klüsener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hogouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid signaling. Plant Cell 16:1163–1177

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylation of ABA response element –binding factors. Plant J 44:939–949

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohura L, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9

    CAS  Google Scholar 

  • Köhler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32:185–194

    PubMed  Google Scholar 

  • Kudla J, Batistić O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, the effects of abh1 on AtPP2CA mRNA. Plant Physiol 140:127–139

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, Delong A, Schroeder JI (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14:2849–2861

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Cuéllar-Pérez A, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A 108:5891–5896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:15833–15842

    Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    PubMed  CAS  Google Scholar 

  • Lee Y, Choi YB, Suh S, Lee J, Assmann SM, Joe CO, Kelleher JF, Crain RC (1996) Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. Plant Physiol 110:987–996

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci U S A 106:21419–21424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lemichez E, Wu Y, Sanchez J-P, Mettouchi A, Mathur J, Chua N-H (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev 15:1808–1816

    PubMed  CAS  PubMed Central  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Leon J, Lamotte O, Metraux J-P (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    PubMed  PubMed Central  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assman SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    PubMed  CAS  Google Scholar 

  • Li J, Kinoshita T, Pandey S, Ng CK-Y, Gygi SP, Shimazaki K, Assmann SM (2002) Modulation of an RNA-binding protein by abscisic acid-activated protein kinase. Nature 418:793–797

    PubMed  CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu X, Yue Y, Li W, Nie Y, Li W, Wu W-H, Ma L (2007a) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    PubMed  CAS  Google Scholar 

  • Liu X, Yue Y, Li W, Ma L (2007b) Response to comment on “A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science 318:914d

    Google Scholar 

  • Liu Q, Xu C, Wen C-K (2010) Genetic and transformation studies reveal negative regulation of ERS1 ethylene receptor signaling in Arabidopsis. BMC Plant Biol 10:60

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu C, Han MH, Guevara-Garcia A, Fedoroff V (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci U S A 99:|15812–15817

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lü D, Zhang X, Jiang J, An GY, Zhang I, Song C-P (2005) NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. J Plant Physiol Mol Biol 31:62–70

    Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389–S400

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Maathuis FJM, Ichida AM, Sanders D, Schroeder JI (1997) Roles of higher K+ channels. Plant Physiol 114:1141–1149

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Huguency P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marten H, Konrad KR, Dietrich P, Roelfsema RG, Hedrich R (2007) Ca2+-dependent and –independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum. Plant Physiol 143:28–37

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    PubMed  CAS  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    PubMed  CAS  Google Scholar 

  • McCourt P, Creelman R (2008) The ABA receptors – we report you decide. Curr Opin Plant Biol 11:474–478

    PubMed  CAS  Google Scholar 

  • McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS (2005) G-protein signaling: back to the future. Cell Mol Life Sci 62:551–577

    PubMed  CAS  PubMed Central  Google Scholar 

  • McDonald KL, Cahill DM (1996) Influence of abscisic acid and the abscisic acid biosynthesis inhibitor, norflurazon, on interaction between Phytophthora sojae and soybean (Glycine max). Eur J Plant Pathol 105:651–658

    Google Scholar 

  • Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li Jun, Wang Y, Li Jiayang, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608

    PubMed  CAS  PubMed Central  Google Scholar 

  • Melcher K, Xu Y, Ng L-M, Zhou E, Soon F-F, Chinnusamy V, Suino-Powell KM, Kovach A, Tham FS, Cutler SR, Li J, Yong E-L, Zhu J-K, Xu HE (2010a) Identification and mechanism of ABA receptor antagonism. Nat Struct Mol Biol 17:1102–1108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Melcher K, Zhou XE, Xu HE (2010b) Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signalling. Curr Opin Struct Biol 20:722–729

    PubMed  CAS  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The Botrytis Susceptible 1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    PubMed  CAS  PubMed Central  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseaur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    PubMed  CAS  Google Scholar 

  • Milborrow BV (2001) The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J Exp Bot 52(359):1145–1164

    PubMed  CAS  Google Scholar 

  • Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    PubMed  CAS  Google Scholar 

  • Miyaloudama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F (2009) Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol 150:1556–1566

    Google Scholar 

  • Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira KS, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signalling. Nature 462:609–614

    PubMed  CAS  Google Scholar 

  • Moes D, Himmelbach A, Korte A, Haberer G, Grill E (2008) Nuclear localization of the mutant protein phosphatase abi1 is required for sensitivity towards ABA responses in Arabidopsis. Plant J 54:806–819

    PubMed  CAS  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    CAS  Google Scholar 

  • Mohr PG, Cahill DM (2004) Suppression by abscisic acid of lignin production and monolignol pathway gene expression in interactions of Arabidopsis with oomycete and bacterial pathogens. Phytopathology: abstracts of American Society of Plant Biologists annual meeting, p 74

    Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191

    PubMed  CAS  Google Scholar 

  • Moore JW, Loake CJ, Spoel SH (2011) Transcription dynamics in plant immunity. Plant Cell 23:2809–2820

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:e327

    PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    PubMed  CAS  Google Scholar 

  • Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A (2011) Rho proteins of plants-functional cycle and regulation of cytoskeletal dynamics. Eur J Cell Biol 90:934–943

    PubMed  CAS  Google Scholar 

  • Muller AH, Hansson M (2009) The barley magnesium chelatase 150-kb subunit is not an abscisic acid receptor. Plant Physiol 150:157–166

    PubMed  CAS  PubMed Central  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    PubMed  CAS  PubMed Central  Google Scholar 

  • Munemasa S, Mori IC, Murata Y (2011) Methyl jasmonate signaling and signal crosstalk berween methyl jasmonate and abscisic acid in guard cells. Plant Signal Behav 6:939–941

    PubMed  CAS  PubMed Central  Google Scholar 

  • Munemasa S, Muroyama D, Nagahashi H, Nakamura Y, Mori IC, Murata Y (2013) Regulation of reactive oxygen species –mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Front Plant Sci 4:472. doi:10.3389/fpls.2013.00472

    PubMed Central  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream and downstream of reactive oxygen species production. Plant Cell 14:3089–3099

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK21/SnRK2.3 involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    PubMed  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    PubMed  CAS  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    CAS  PubMed Central  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299

    CAS  PubMed Central  Google Scholar 

  • Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H, Fujisawa Y, Kato H, Iwasaki Y (2009) Function of the α subunit of rice heterotrimeric G protein in brassinosteroid signaling. Plant Cell Physiol 50:161–172

    PubMed  CAS  Google Scholar 

  • Pandey S, Chen J-G, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141:243–256

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    PubMed  CAS  Google Scholar 

  • Pandey S, Wang R-S, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R (2010) Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 6:372

    PubMed  PubMed Central  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pei Z-M, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    PubMed  CAS  Google Scholar 

  • Perfus-Barbeoch I, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719–731

    PubMed  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins EBF1 and EBF2. Cell 115:679–689

    PubMed  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill L (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    PubMed  CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2008) Retraction. The RNA-binding protein FCA is an abscisic acid receptor. Nature 456:824

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011a) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    CAS  PubMed Central  Google Scholar 

  • Reddy ASN, Ben-Hur A, Day IS (2011b) Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry 72:1007–1019

    PubMed  CAS  Google Scholar 

  • Rezzonico E, Flury N, Meins F, Beffa R (1998) Transcriptional down-regulation by abscisic acid of pathogenesis-related β-1,3-glucanase genes in tobacco cell cultures. Plant Physiol 117:585–592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Risk JM, Macknight RC, Day CL (2008) FCA does not bind abscisic acid. Nature 456:E5–E6

    PubMed  CAS  Google Scholar 

  • Risk JM, Day CL, Macknight RC (2009) Reevaluation of abscisic acid-binding assays shows that G-Protein-Coupled Receptor 2 does not bind abscisic acid. Plant Physiol 150:6–11

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roelfsema MR, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578–588

    PubMed  CAS  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signaling. Plant Physiol 37:354–369

    CAS  Google Scholar 

  • Saez A, Robert N, Maktabi MH, Schroeder JL, Serrano R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB. Plant Physiol 141:1389–1399

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori IC, Murata Y (2008) Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol 49:1396–1401

    PubMed  CAS  Google Scholar 

  • Saito N, Nakamura Y, Mori IC, Murata Y (2009) Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal Behav 4:119–120

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sakamoto H, Matsuda O, Iba K (2008) ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. Plant J 56:411–422

    PubMed  CAS  Google Scholar 

  • Sánchez-Vallet A, López C, Ramos B, Delgado-Cerezo M, Riviere P, Llorente F, Fernández PV, Miedes E, Estevez JM, Grant M, Molina A (2012) Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol 160:2109–2124

    PubMed  PubMed Central  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

    PubMed  CAS  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Marquez JA, Cutler SR, Rodriguez PL (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–578

    PubMed  CAS  Google Scholar 

  • Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniquchi M, Miyake H, Goto DB, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448

    PubMed  CAS  Google Scholar 

  • Schachtman DP, Goodger JG (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 9:236–243

    Google Scholar 

  • Schmidt K, Pflugmacher M, Klages S, Maser A, Mock A, Stahl DJ (2008) Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercospora beticola supports the role of ABA as a repressor of plant defence in sugar beet. Mol Plant Pathol 9:661–673

    PubMed  CAS  Google Scholar 

  • Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338:427–430

    Google Scholar 

  • Schroeder JI, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci U S A 87:9305–9309

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartz SH, Tan BC, McCarty DR, Welch W, Zeevaart JA (2003) Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochim Biophys Acta 1619:9–14

    PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    PubMed  CAS  Google Scholar 

  • Seo PJ, Park C-M (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T (2000) The Arabidopsis aldehyde oxidase (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A 97:12908–12913

    CAS  PubMed Central  Google Scholar 

  • Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sheard LB, Zheng N (2009) Plant biology signal advance for abscisic acid. Nature 462:575–576

    PubMed  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinase and stress signal transduction in plants. Science 274:1900–1902

    CAS  Google Scholar 

  • Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci U S A 95:975–980

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    PubMed  CAS  Google Scholar 

  • Sirichandra C, Gu D, Hu H, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S (2009) Phosphorylation of Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986

    PubMed  CAS  Google Scholar 

  • Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5:e13935

    PubMed  PubMed Central  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE –INSENSITIVE3 and ETHYLENE-RESPONSE FACTOR1. Genes Dev 12:3703–3714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soosaar JL, Murch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798

    PubMed  CAS  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune response. Cell Host Microbe 3:348–351

    PubMed  CAS  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signaling: an emerging field. J Exp Bot 63:1525–1542

    PubMed  CAS  PubMed Central  Google Scholar 

  • Staxén I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci U S A 96:1779–1784

    PubMed Central  Google Scholar 

  • Sugiyama Y, Uraji M, Watanabe-Sugimoto M, Okuma E, Munemasa S, Shimoishi Y, Nakamura Y, Mori IC, Iwai S, Murata Y (2012) FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells. J Exp Bot 63:1357–1365

    PubMed  CAS  PubMed Central  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 99:13307–13312

    PubMed  CAS  PubMed Central  Google Scholar 

  • Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes in their ABA selectivity and sensitivity. Plant J 61:25–35

    PubMed  CAS  Google Scholar 

  • Tahtiharju S, Palva T (2001) Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J 26:461–470

    PubMed  CAS  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    CAS  PubMed Central  Google Scholar 

  • Tan B-C, Joseph LM, Deng W-T, Liu L, Li Q-B, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    PubMed  CAS  Google Scholar 

  • Tesmer JJG (2010) The quest to understand heterotrimeric G protein signaling. Nat Struct Mol Biol 17:650–652

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisic acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58

    Google Scholar 

  • Ton J, Mauch-Mani B (2004) β-Amino-butyric acid-induced resistance is based on ABA-dependent priming for callose. Plant J 38:119–130

    PubMed  CAS  Google Scholar 

  • Ton J, Jakab G, Toquin V, Iavicoli A, Flors V, Maeder MN, Métraux J-P, Mauch-Mani B (2005) Dissecting the β-aminobutyric acid-induced priming pathways in Arabidopsis. Plant Cell 17:987–999

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    PubMed  CAS  Google Scholar 

  • Trouverie J, Vidal G, Zhang Z, Sirichandra C, Madiona K, Amiar Z, Prioul JL, Jeannette E, Rona JP, Brault M (2008) Anion channel activation and proton pumping inhibition involved in the plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells are both ROS dependent. Plant Cell Physiol 49:1405–1507

    Google Scholar 

  • Trusov Y, Chakravorty D, Botella JR (2012) Diversity of heterotrimeric G-protein γ subunits in plants. BMC Res Notes 5:608

    PubMed  CAS  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106:17588–17593

    PubMed  CAS  PubMed Central  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    PubMed  CAS  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K (2013) Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal 6(270):rs8. doi:10.1126/scisignal.2003509

    Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Te W, Hossain M-A, Masuda C, Miura A, Nakamura Y, Mori I-C, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    PubMed  CAS  PubMed Central  Google Scholar 

  • van Loon LC, Rep M, Pieterse C (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:71–728

    Google Scholar 

  • Verma DP, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47:693–701

    PubMed  CAS  Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, 2nd edn. CRC Press, Taylor Francis Group, Boca Raton, pp 510

    Google Scholar 

  • Vidhyasekaran P (2014) PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht, pp 442

    Google Scholar 

  • Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Lauriere C, Meriot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–3184

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vranová E, Inzé D, Van Brueusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang P, Song C-P (2008) Guard-cell signaling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    PubMed  CAS  Google Scholar 

  • Wang XF, Zhang DP (2008) Abscisic acid receptors: multiple signal perception sites. Ann Bot 101:311–317

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    PubMed  CAS  Google Scholar 

  • Wang PC, Du YY, An GY, Zhou Y, Miao C, Song C-P (2006a) Analysis of global expression profiles of Arabidopsis genes under abscisic acid and H2O2 applications. J Integr Plant Biol 48:62–74

    CAS  Google Scholar 

  • Wang W, Esch JJ, Shiu S-H, Agula H, Binder BM, Chang C, Patterson S, Bleecker AB (2006b) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ER1 ethylene receptor of Arabidopsis. Plant Cell 18:3429–3442

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W-H, Yi X-Q, Han A-D, Liu T-W, Chen J, Wu F-H, Dong X-J, He J-X, Pei Z-M, Pei Z-M, Zheng H-L (2012) Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63:177–190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward JM, Pei Z-M, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833–844

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward EWB, Cahill DM, Bhattacharyya M (1989) Abscisic acid suppression of phenylalanine ammonia lyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma f sp glycinea. Plant Physiol 91:23–27

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frel dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    PubMed  CAS  Google Scholar 

  • Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502

    CAS  PubMed Central  Google Scholar 

  • Whenham RJ, Fraser RSS, Brown LP, Payne JA (1986) Tobacco mosaic virus-induced increase in abscisic acid concentration in tobacco leaves – intracellular location in light and dark-green areas, and relationship to symptom development. Planta 168:592–598

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthesis is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    PubMed  CAS  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Desprès C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xiong I, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    CAS  PubMed Central  Google Scholar 

  • Xu J, Audenaert K, Hofte M, De Vleesschauwer D (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv. oryzae suppressing salicylic acid-mediated defenses. PLoS One 8:e67413

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yalowsky S, Baluska F, Jones A (2010) Integrated G proteins signaling in plants. Springer, Heidelberg

    Google Scholar 

  • Yamamoto S, Suzuki K, Shinshi H (1999) Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J 20:571–579

    PubMed  CAS  Google Scholar 

  • Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30:1320–1325

    PubMed  CAS  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14(Suppl):S375–S388

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yazawa K, Jiang C-J, Kojima M, Sakakibara H, Takatsuji H (2012) Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryze infection decreases its susceptibility to the fungus. Physiol Mol Plant Pathol 78:1–7

    CAS  Google Scholar 

  • Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:1230–1236

    PubMed  CAS  Google Scholar 

  • Yong G, Tingting L, Yang L, Cabda R, Yun Z, Maolin W (2010) Isolation and characterization of gene encoding G protein α subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 37:3957–3965

    Google Scholar 

  • Yoo SD, Cho Y-H, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee I-J (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotech 12:63–68

    Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi S, Takahashi F, Alonso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    PubMed  CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK26 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    PubMed  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinorzaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and regulate for full activation. Plant J 61:672–685

    PubMed  CAS  Google Scholar 

  • Yu X-C, Zhu S-Y, Gao G-F, Wang X-J, Zhao R, Zou K-Q, Wang X-F, Zhang X-Y, Wu F-Q, Peng C-C, Zhang D-P (2007) Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, post germination growth, and stomatal movement. Plant Mol Biol 64:531–538

    CAS  Google Scholar 

  • Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21:599–603

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang DP, Wu ZY, Li XY, Zhao ZX (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128:714–725

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain of function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang X-C, Huang R (2004a) Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol 55:825–834

    CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004b) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101:9508–9513

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang WH, Yu LJ, Zhang YY, Wang XM (2005) Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim Biophys Acta 1736:1–9

    PubMed  CAS  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Tan M, Hu XL (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Yao W, Dong N, Liang H, Liu H, Huang R (2007) A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. J Exp Bot 58:2993–3003

    PubMed  CAS  Google Scholar 

  • Zhang W, He SY, Assmann SM (2008) The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56:984–996

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. J Exp Bot 62:2371–2379

    PubMed  CAS  Google Scholar 

  • Zhang H, Gao Z, Zheng X, Zhang Z (2012) The role of G-proteins in plant immunity. Plant Signal Behav 7:1284–1288

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou J, Zhang H, Yang Y, Zhang Z, Zhang H, Hu X, Chen J, Wang X-C, Huang R (2008) Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J Exp Bot 59:645–652

    PubMed  CAS  Google Scholar 

  • Zhu S-Y, Yu X-C, Wang X-J, Zhao R, Li Y, Fan R-C, Shang Y, Du S-Y, Wang X-F, Wu F-Q, Xu Y-H, Zhang X-Y, Zhang D-P (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from Creosote Bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidhyasekaran, P. (2015). Abscisic Acid Signaling System in Plant Innate Immunity. In: Plant Hormone Signaling Systems in Plant Innate Immunity. Signaling and Communication in Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9285-1_5

Download citation

Publish with us

Policies and ethics