Skip to main content

Load Matching Detector

  • Chapter
  • First Online:
  • 1704 Accesses

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 49))

Abstract

For using continuous fractional voltage tracking (CFVT) it is crucial to know both, the optimal voltage fraction \(\varepsilon _\text {opt}\), and the actual transducer’s open-circuit voltage \(V_\text {g,oc}\). Therefore, this chapter presents a novel fully-analog load matching detector, which merges these two requirements: it is programmable for the needed \(\varepsilon _\text {opt}\), monitors a proportional measure to \(V_\text {g,oc}\left( t \right) \), and links both to a single output signal. This output signal indicates either the presence of an over-load or under-load condition. Thus, this detector can directly control a wide range of switch-mode converters. The review shows common methods to determine \(\varepsilon _\text {opt}\), and further related techniques for programming an input resistance of a SMPS for reasons of harvesting at the MPP. The details of the detection principle are explained, is followed by the circuit implementation with focus on low current consumption and wide voltage range operation. Simulation results of continuous tracking for both kinds of sources, AC and DC, show the efficient \(\,\mu \)W power operation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Thereby, the programed parameter exploits the fact, that miniaturized electromagnetic transducers operated at low to moderate frequencies, can be assumed as having a real input impedance. \(R_\text {g}\) \(\le \) \(X_\text {g}\), Chap. 2.

  2. 2.

    The rectifier, e.g. a CCTR, is assumed as quasi-lossless, i.e. with a negligible voltage drop which sets \(V_\text {g}\) \(\,\approx \,\) \(V_\text {rect}\) (Chap. 5).

References

  1. J. Yi, F. Su, Y.-H. Lam, W.-H. Ki, and C.-Y. Tsui, ‘An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting’, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (2008), pp. 2570–2573

    Google Scholar 

  2. D. Brunelli, L. Benini, C. Moser, L. Thiele, An efficient solar energy harvester for wireless sensor nodes, in Proceedings of Automation and Test in Europe, Design (2008), pp. 104–109

    Google Scholar 

  3. G. Szarka, B. Stark, S. Burrow, Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27(2), 803–815 (2012)

    Article  Google Scholar 

  4. P. Becker, E. Hymon, B. Folkmer, Y. Manoli, Piezoelectric energy harvester with constant stress distribution and direct initial energy injection interface circuitry, in Proceedings of Power MEMS (2011), vol. 2011, pp. 101–104

    Google Scholar 

  5. G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18(2), 696–703 (2003)

    Article  Google Scholar 

  6. E. Lefeuvre, D. Audigier, D. Guyomar, Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Trans. Power Electron. 22(5), 2018–2025 (2007)

    Article  Google Scholar 

  7. H. P. Forghani-Zadeh and G. A. Rincon-Mora, Current-sensing techniques for dc-dc converters, in Proceedings of IEEE Midwest Symposium on Circuits and Systems (MWSCAS) (2002), pp. 577–580

    Google Scholar 

  8. C.Y. Leung, P. Mok, K.N. Leung, A 1- V integrated current-mode boost converter in standard 3.3/5- V CMOS technologies. IEEE J. Solid-State Circuits 40(11), 2265–2274 (2005)

    Article  Google Scholar 

  9. C. Lee, P. Mok, A monolithic current-mode cmos dc-dc converter with on-chip current-sensing technique. IEEE J. Solid-State Circuits 39, 3–14 (2004)

    Article  Google Scholar 

  10. S. Yuvarajan and L. Wang, Power conversion and control using a current sensing power mosfet, in Proceedings of IEEE Midwest Symposium on Circuits and Systems (MWSCAS) (1992), pp. 166–169

    Google Scholar 

  11. D. Maurath, F. Michel, M. Ortmanns, and Y. Manoli, A 0.5 V rail-to-rail 1.5 \(\mu \) W CMOS amplifier for micro-energy harvesting applications, in Proceedings of IEEE Midwest Symposium on Circuits and Systems (MWSCAS) (2008), pp. 189–192

    Google Scholar 

  12. C. Peters, D. Spreemann, M. Ortmanns, Y. Manoli, “A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications”. J. Micromech. Microeng. 18(10), 104005 (2008)

    Article  ADS  Google Scholar 

  13. S. Dwari, L. Parsa, An efficient ac-dc step-up converter for low-voltage energy harvesting. IEEE Trans. Power Electron. 25(8), 2188–2199 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Maurath .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maurath, D., Manoli, Y. (2015). Load Matching Detector. In: CMOS Circuits for Electromagnetic Vibration Transducers. Springer Series in Advanced Microelectronics, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9272-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9272-1_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9271-4

  • Online ISBN: 978-94-017-9272-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics