Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 49))

  • 1777 Accesses

Abstract

The needs and requirements on micro energy harvesting ask for a profound analysis and awareness about the actual intention and fields of application. This introduction starts off with an overview about the beneficial application perspectives when using micro-scale sensor systems. It is found that beside the front-end devices an efficient and smart infrastructure is crucial. Beside communication, this infrastructure comprises the energy supply and power processing of mostly autonomous and distributed systems. Yet, this is the link to the necessity and configuration of micro energy harvesting. Hence, promising energy harvesting transducer concepts and excitation sources are introduced. This is followed by presenting the actual harvesting and power management circuits. This leads to the exposition of the basic questions to be answered and the concrete aims to be accomplished within this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Special report: Cutting the cord - wireless energy makes wireless devices look easy. The Economist, Technical Report, April 2007

    Google Scholar 

  2. T.W. Haesch, 100 Produkte der Zukunft (Econ Verlag, Berlin, 2007)

    Google Scholar 

  3. H. Brody, 10 emerging technologies that will change the world. Technology Review, Technical Report, February 2003 Issue of Technology Review, 2003. [Online] http://www.technologyreview.com/Infotech/13060/?a=f

  4. J. Rodriguez-Rodriguez, M. Delgado-Restituto, J. Masuch, A. Rodriguez-Perez, F. Alarcon, A. Rodriguez-Vazquez, An ultralow-power mixed-signal back end for passive sensor uhf rfid transponders. IEEE Trans. Ind. Electron. 59(2), 1310–1322 (2012)

    Article  Google Scholar 

  5. P. Schopp, L. Klingbeil, C. Peters, Y. Manoli, Design, geometry evaluation, calibration of a gyroscope-free inertial measurement unit. Sensors Actuators A Phys. 162(2), 379–387 (2010)

    Article  Google Scholar 

  6. E.S. Leland, E.M. Lai, P.K. Wright, A self-powered wireless sensor for indoor environmental monitoring. In Proceedings of the Wireless Networking Symposium, 2004

    Google Scholar 

  7. G. Santucci, Internet of things - when your fridge orders your groceries. In In Proceedings of the International Conference on Future Trends of the Internet, Luxembourg, January 2009

    Google Scholar 

  8. H. Huang, G. Gartner, M. Schmidt, L. Yan, Smart environment for ubiquitous indoor navigation. In Proceedings of the International Conference on New Trends in Information and Service Science (NISS), July 2009, pp. 176–180

    Google Scholar 

  9. C. Ramos, J.C. Augusto, D. Shapiro, Ambient intelligence - the next step for artificial intelligence. Proceedings of the International IEEE Intelligent Systems 23(2), 15–18 (2008)

    Article  Google Scholar 

  10. C. Williams, C. Shearwood, M.A. Harradine, P. Mellor, T.S. Birch, R.B. Yates, Development of an electromagnetic micro-generator. Proc. IEE Circuits Devices Syst. 148(6), 337–342 (2001)

    Article  Google Scholar 

  11. N. Xu, S. Rangwala, K.K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, D. Estrin, A wireless sensor network for structural monitoring. In Proceedings of the International Conference on Embedded Networked Sensor Systems (SenSys), ACM, Baltimore, Maryland, USA, November 2004

    Google Scholar 

  12. J.P. Lynch, An overview of wireless structural health monitoring for civil structures. Philos. Trans. R. Soc. London, Series A Math. Phys. Eng. Sci. 365, 345–372 (2007)

    Google Scholar 

  13. T. Galchev, H. Kim, K. Najafi, Non-resonant bi-stable frequency-increased power sca venger from low -frequency ambient vibration. In Proceedings of the IEEE Solid-State Sensors, Actuators and Microsystems Conference (Transducers), 2009

    Google Scholar 

  14. C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, H. Baltes, Cmos single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid-State Circuits 37, 1867–1878 (2002)

    Article  Google Scholar 

  15. A. El-Hoiydi, J.-D. Decotignie, J. Hernandez, Low power mac protocols for infrastructure wireless sensor networks. In Proceedings of the European Wireless (EW), Barcelona, Spain, February 2004, pp. 563–569

    Google Scholar 

  16. C. Arm, S. Gyger, J.-M. Masgonty, M. Morgan, J.-L. Nagel, C.P.F. Rampogna, P. Volet, Low-power 32-bit dual-mac 120 \(\mu \) w/mhz 1.0 v icyflex dsp/mcu core. IEEE J. Solid-State Circuits 44(7), 2055–2064 (2009)

    Article  Google Scholar 

  17. M. Law, A. Bermak, H. Luong, A sub-\(\mu \)w embedded cmos temperature sensor for rfid food monitoring application. IEEE J. Solid-State Circuits 45(6), 1246–1255 (2010)

    Article  Google Scholar 

  18. C. Ramachandran, S. Misra, M. Obaidat, A probabilistic zonal approach for swarm-inspired wildfire detection using sensor networks. Int. J. Commun. Syst. 21, 1047–1073 (2008)

    Article  Google Scholar 

  19. H. Sun, V.D. Florio, N. Gui, C. Blondia, Promises and challenges of ambient assisted living systems. In Proceedings of the Sixth International Conference Information Technology: New Generations (ITNG), April 2009, pp. 1201–1207

    Google Scholar 

  20. A. Wong, D. McDonagh, O. Omeni, C. Nunn, M. Hernandez-Silveira, A. Burdett, Sensium: an ultra-low-power wireless body sensor network platform: Design and application challenges. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Toumaz Technology Limited, Abindgon, UK, 2009, pp. 6576–6579

    Google Scholar 

  21. T. Starner, Human-powered wearable computing. IBM Syst. J. 35(3,4), 618–629 (1996)

    Google Scholar 

  22. B. Yang and K. -S. Yun, Efficient energy harvesting from human motion using wearable piezoelectric shell structures. In Proceedings of the IEEE Solid-State Sensors, Actuators and Microsystems Conference (Transducers), June 2011, pp. 2646–2649

    Google Scholar 

  23. F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun, H. Feng, Chochelar implants: System design, integration, evaluation. IEEE Reviews in Biomedical Engineering, 1, pp. 115–142, Departments of Anatomy and Neurobiology (University of California, Irvine, CA, 2008)

    Google Scholar 

  24. M. Ortmanns, A. Rocke, M. Gehrke, H.-J. Tiedtke, A 232-channel epiretinal stimulator asic. IEEE J. Solid-State Circuits 42(12), 2946–2959 (2007)

    Article  Google Scholar 

  25. C. Hitzelberger, Y. Manoli, R. Hakenes, S. Gross, A microcontroller embedded asic for an implantable electro-neural stimulator. In Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC), 2001, pp. 413–416

    Google Scholar 

  26. K. Sooksood, T. S. und M. Ortmanns, Recent advances in charge balancing for functional electrical stimulation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minnesota, USA, 2009 (EMBC, minneapolis)

    Google Scholar 

  27. L. Turicchia, B. D. Valle, J. Bohorquez, W. Sanchez, V. Misra, L. Fay, M. Tavakoli, R. Sarpeshkar, Ultralow-power electronics for cardiac monitoring. IEEE Trans. Circuits Syst. I Reg. Papers 57(9), 2279–2290 (Sep. 2010)

    Google Scholar 

  28. O.G. Gruschke, N. Baxan, L. Clad, K. Kratt, D. von Elverfeldt, A. Peter, J. Hennig, V. Badilita, U. Wallrabe, J.G. Korvink, Lab on a chip phased-array mr multi-platform analysis system. J. Lab Chip 12(3), 495–502 (2012)

    Article  Google Scholar 

  29. J. Marek, Mems for automotive and consumer electronics. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, January 2010, pp. 9–17

    Google Scholar 

  30. G. Delagi, Harnessing technology to advance the next-generation mobile user-experience. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2010, pp. 18–24

    Google Scholar 

  31. J. M. Rabaey, Wireless beyond the third generation - facing the energy challenge. In Proceedings of the IEEE/ASM International Symposium on Low Power Electronics and Devices (ISLPED), BWRC, EECS Department, University of California at Berkeley, 2001, pp. 1–3

    Google Scholar 

  32. Internet of things. In ITU report, 2005

    Google Scholar 

  33. N. Taccini, G. Loriga, M. Pacelli, R. Paradiso, Wearable monitoring system for chronic cardio-respiratory diseases. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), August 2008, pp. 3690–3693

    Google Scholar 

  34. A. Bodensohn, R. Falsett, M. Haueis, M. Pulvermuller, Autonomous sensor systems for car applications. http://ebookbrowse.com/s2t3-haueis-pdf-d72491470, 2005

  35. J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4, 18–27 (2005)

    Article  Google Scholar 

  36. D. Culler, D. Estrin, M. Srivastava, Guest editors’ introduction: Overview of sensor networks. IEEE Trans. Comput. 37, 41–49 (2004)

    Google Scholar 

  37. N. Kurata, M. Suzuki, S. Saruwatari, H. Morikawa, Actual application of ubiquitous structural monitoring system using wireless sensor networks. In Proceedings of the 14th World Conference on Earthquake Engineering, Oct 2008

    Google Scholar 

  38. X. Vilajosana, J. Llosa, J. Pacho, I. Vilajosana, A. Juan, J. Vicario, A. Morell, Zero: Probabilistic routing for deploy and forget wireless sensor networks. IEEE Sensors J. 10(10), 8920–8937 (2010)

    Article  Google Scholar 

  39. J. Rabaey, M. Ammer, J. da Silva, Picoradio supports ad hoc ultra-low power wireless networking. IEEE Comput. Mag. 33(7), 42–48 (2000)

    Article  Google Scholar 

  40. B. Calhoun, D. Daly, N. Verma, D. Finchelstein, D. Wentzloff, A. Wang, S.-H. Cho, A. Chandrakasan, Design considerations for ultra-low energy wireless microsensor nodes. IEEE Trans. Computers 54(6), 727–740 (2005)

    Google Scholar 

  41. H. Haverinen, J. Siren, P. Eronen, Energy consumption of always-on applications in wcdma networks. In Proceedings of the IEEE 65th Vehicular Technology Conference (VTC), 2007, pp. 964–968

    Google Scholar 

  42. ITRS. (2009) The international technology roadmap for semiconductors. ITRS, http://public.itrs.net

  43. I. Buchmann, Battery statistics. Battery Univeristy. [Online] http://batteryuniversity.com/learn/article/battery_statistics, 2010

  44. N.J. Dudney, Thin film micro-batteries. Electrochem. Soc. Interface 17(3), 44–48 (2008)

    Google Scholar 

  45. J. M. Kahn, R. H. Katz, K. S. J. Pister, Next century challenges: mobile networking for smart dust. In Proceedings of the IEEE/ACM Mobile Computing and Networking Conference (Mobicom). ACM New York, NY, USA, 1999

    Google Scholar 

  46. L. Doherty, B.A. Warneke, B. Boser, K.S.J. Pister, Energy and performance considerations for smart dust. Int. J. Parallel Distrib. Sensor Networks 4, 121–133 (2001)

    Google Scholar 

  47. B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M. Kahn, B. E. Boser, K. S. J. Pister, An autonomous 16 mm\(^3\) solar-powered node for distributed wireless sensor networks. In Proceedings of the IEEE Sensors, 2002, pp. 1510–15

    Google Scholar 

  48. J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power wireless research. In Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks (IPSN), April 2005, pp. 364–369

    Google Scholar 

  49. S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. J. Comput. Commun. 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  50. R. Amirtharajah, A.P. Chandrakasan, Self-powered signal processing using vibration-based power generation. IEEE J. Solid-State Circuits 3, 687–690 (1998)

    Article  Google Scholar 

  51. E. Yeatman, Advances in power sources for wireless sensor nodes. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Imperial College, 2004, pp. 20–21

    Google Scholar 

  52. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486 (2008)

    Article  Google Scholar 

  53. Y. Manoli, Energy harvesting - from devices to systems. In Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC), 2010, pp. 27–36

    Google Scholar 

  54. J. Happich, Energy harvesting could reach a usd4.4 billion market in 2021. EEtimes, Technical Report 222908555, August 2011. [Online] http://www.electronics-eetimes.com/en/energy-harvesting-could-reach-a-usd4.4-billion-market-in-2021.html

  55. H. Zervos, P. Harrop, Energy harvesting for electronic vehicles 2011–2021. IDTechEx, October 2011. [Online] http://www.idtechex.com/research/reports/energy-harvesting-for-electric-vehicles-2011-2021-000263.asp

  56. P. Harrop, R. Das, Energy harvesting and storage for electronic devices. IDTechEx, May 2011. [Online] Available: http://www.idtechex.com/research/reports/energy-harvesting-and-storage-for-electronic-devices-2011-2021-000270.asp

  57. Y. Tan, S. Panda, Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Trans. Power Electron. 58(9), 4424–4435 (2011)

    Google Scholar 

  58. J.F. Randall, Designing indoor solar products: photovoltaic technologies for AES (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  59. R. Vullers, R. Schaijk, H. Visser, J. Penders, C. Hoof, Energy harvesting for autonomous wireless sensor networks. IEEE J. Solid-State Circuits 2(2), 29–38 (2010)

    Article  Google Scholar 

  60. M. Freunek, M. Mler, T. Ungan, W. Walker, L.M. Reindl, New physical model for thermoelectric generators. J. Electron. Mater. 38(7), 1214 (2009)

    Article  ADS  Google Scholar 

  61. T. Huesgen, P. Woias, A novel self-starting mems-heat engine for thermal energy harvesting. In Proceedings of the IEEE International Conference Micro Electro Mechanical Systems (MEMS), 2010, pp. 1179–1182

    Google Scholar 

  62. C. Shi, B. Miller, K. Mayaram, T. Fiez, A multiple-input boost converter for low-power energy harvesting. IEEE Trans. Circuits Syst. II Express. Briefs 58(12), 827–831 (2011)

    Google Scholar 

  63. P. Harrop, Energy harvesting workshop barcelona (Energy Harvesting Journal, IDTechEx, 2009)

    Google Scholar 

  64. M. Kuhl, P. Gieschke, D. Rossbach, S. A. Hilzensauer, P. Ruther, O. Paul, Y. Manoli, A telemetric stress-mapping cmos chip with 24 fet-based stress sensors for smart orthodontic brackets. In IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2011, pp. 108–110

    Google Scholar 

  65. T. Le, K. Mayaram, T. Fiez, Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid-State Circuits 43(5), 1287–1302 (2008)

    Article  Google Scholar 

  66. T. Ungan, L. Reindl, Harvesting low ambient rf-sources for autonomous measurement systems. In Proceedings of the IEEE Instruments and Measurements Technical Conference (IMTC), May 2008, pp. 62–65

    Google Scholar 

  67. H. Xu, M. Ortmanns, A temperature and process compensated ultralow-voltage rectifier in standard threshold cmos for energy-harvesting applications. IEEE Trans. Circuits Syst. II Express. Briefs 58(12), 812–816 (2011)

    Google Scholar 

  68. S. Kerzenmacher, J. Ducr, R. Zengerle, F. von Stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182(1), 1–17 (2008)

    Article  Google Scholar 

  69. N. Ching, G. Chan, W. Li, H. Wong, P. Leong, Pcb integrated micro-generator for wireless systems. In Proceedings of the International Symposium on Smart Structures, Hong Kong, October 2000

    Google Scholar 

  70. J. Lee, S. Yuen, W. Li, P. Leons, Development of an aa size energy transducer with micro resonators. In Proceedings of the IEEE International Symposium Circuits and Systems (ISCAS), Bangkok, Thailand, 2003, pp. 876–879

    Google Scholar 

  71. S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, J. H. Lang, Vibration-to-electric energy conversion. In IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 64–76, Feb. 2001

    Google Scholar 

  72. C. Saha, T. O’Donnell, H. Loder, S.P. Beeby, M.J. Tudor, Optimization of an electromagnetic energy harvesting device. IEEE Trans. Magn. 42(10), 3509–3511 (2006)

    Article  ADS  Google Scholar 

  73. S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O’Donnell, C.R. Saha, S. Roy, A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)

    Article  ADS  Google Scholar 

  74. C. Cepnik, O. Radler, S. Rosenbaum, T. Strla, U. Wallrabe, Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling. Sensors Actuators A Phys. 167, 416–421 (2011)

    Article  Google Scholar 

  75. H. Kulah, K. Najafi, Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sensors J. 8(3), 261–268 (2008)

    Article  Google Scholar 

  76. S. Dwari, L. Parsa, Low voltage energy harvesting systems using coil inductance of electromagnetic microgenerators. In Proceedings of the Annual IEEE Applied Power Electronics Conference and Exposition, February 2009, pp. 1145–1150

    Google Scholar 

  77. I. Sari, T. Balkan, H. Kulah, An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J. Microelectromech. Syst. 19(1), 14–27 (2010)

    Article  Google Scholar 

  78. E. Halvorsen, Energy harvesters driven by broadband random vibrations. J. Microelectromech. Syst. 17(5), 1061–1071 (2008)

    Article  Google Scholar 

  79. C. Peters, D. Maurath, W. Schock, F. Mezger, Y. Manoli, Closed loop wide range tunable mechanical resonator for energy harvesting systems. J. Micromech. Microeng., 19, 094004 (9pp), (2009)

    Google Scholar 

  80. C. Eichhorn, R. Tchagsim, N. Wilhelm, G. Biancuzzi, P. Woias, An energy-autonomous self-tunable piezoelectric vibration energy harvesting system. In Proceedings of the IEEE International Conference Micro Electro Mechanical Systems (MEMS), Jan. 2011, pp. 1293–1296

    Google Scholar 

  81. D. Spreemann, Y. Manoli, B. Folkmer, D. Mintenbeck, Non-resonant vibration conversion. J. Micromech. Microeng. 10.1088(16), 169–173, (2006)

    Google Scholar 

  82. D. Spreemann, B. Folkmer, Y. Manoli, Comparative study of electromagnetic coupling architectures for vibration energy harvesting devices. Proc. PowerMEMS 2008, 257–260 (2008)

    Google Scholar 

  83. D. Spreemann, Realization of nonlinear springs with predefined chracteristic for vibration transducer based on beam structures. Proc. PowerMEMS 2010, 371–374 (2010)

    Google Scholar 

  84. M. Renaud, T. S. abd A. Schmitz, P. F. C. V. H. S. Puers, Piezoelectric harvesters and mems technology: Fabrication, modeling and measurements. In Proceedings of the IEEE Solid-State Sensors, Actuators and Microsystems Conference (Transducers), June 2007, pp. 891–894

    Google Scholar 

  85. P. Woias, M. Wischke, C.E.B. Fuchs, An energy-autonomous wireless temperature monitoring system powered by piezoelectric energy harvesting. Proc. PowerMEMS 2009, 209–212 (2009)

    Google Scholar 

  86. D. Arnold, Review of microscale magnetic power generation. IEEE Trans. Magn. 43(11), 3940–3951 (2007)

    Article  ADS  Google Scholar 

  87. D. Spreemann, Optimized design of resonant electromagnetic vibration energy harvesting devices. Ph.D. dissertation, Universitoy of Freiburg, 2011

    Google Scholar 

  88. P. D. Mitcheson, Analysis and optimisation of energy-harvesting micro-generator systems. Ph.D. dissertation, University of London, Imperial College London, Department of Electrical and Electronic Engineering, 2005

    Google Scholar 

  89. N. Stephen, On energy harvesting from ambient vibration. J. Sound Vib. 293(1–2), 409–425 (2006)

    Article  ADS  Google Scholar 

  90. N. S. Hudaka, G. G. Amatucci, Small-scale energy harvesting through thermoelectric, vibration, radiofrequency power conversion. J. Appl. Phys. 103(10), 101 301(1–24), (2008)

    Google Scholar 

  91. Y. Levron, D. Shmilovitz, On the maximum efficiency of systems containing multiple sources. IEEE Trans. Circuits Syst. I Reg. Papers 57, 2232–2241 (2010)

    Google Scholar 

  92. S. Roundy, S. Kristofer, J. Pister, P. K. Wright, Micro-electrostatic vibration-to-electricity converters. In Proceedings of the International Mechanical Engineering Congress and Exposition (IMECE), 2002

    Google Scholar 

  93. D. Hoffmann, B. Folkmer, Y. Manoli, Fabrication, characterization, modelling of electrostatic micro-generators. J. Micromech. Microeng. 19, 094001 (2009)

    Article  ADS  Google Scholar 

  94. Y. Suzuki, D. Miki, M. Edamoto, M. Honzumi, A mems electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J. Micromech. Microeng. 20, 104002 (2010)

    Article  ADS  Google Scholar 

  95. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), 175–195 (2006)

    Article  Google Scholar 

  96. M. Penella, M. Gasulla, A review of commercial energy harvesters for autonomous sensors. In Proceedings of the IEEE Instruments and Measurements Technical Conference (IMTC), 2007

    Google Scholar 

  97. S. Beeby. (2012) Energy harvesting network. Online. [Online] http://eh-network.org/

  98. O. Soykan, Power sources for implantable medical devices. In Proceedings of the Medical Device Manufacturing and Technology, 2002, pp. 76–79

    Google Scholar 

  99. T. Galchev, H. Kim, K. Najafi, A parametric frequency increased power generator for scavenging low-frequency ambient vibrations. Proceedings of the Eurosensors XXIII 1(1), 1439–1442 (2009)

    Google Scholar 

  100. R. G. Cid-Fuentes, H. Martinez, A. Poveda, E. Alarcon, Electronically tunable switch-mode high-efficiency adaptive band-pass filters for energy harvesting applications. In IEEE International Symposium on Circuits and Systems (ISCAS), May 2012, pp. 684–687

    Google Scholar 

  101. J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes. in Digest of Technical Papers of International Symposium Wearable Computers, 1998

    Google Scholar 

  102. N. Shenck, J. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21(3), 30–42 (2001)

    Article  Google Scholar 

  103. J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, T. Tuan, Picoradios for wireless sensor networks: The next challenge in ultra-low-power design. In IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, 2002, pp. 200–201

    Google Scholar 

  104. S. Hollar, A. Flynn, C. Bellew, K. Pister, Solar powered 10 mg silicon robot. In Proceedings of the IEEE International Conference Micro Electro Mechanical Systems (MEMS), January 2003, pp. 706–711

    Google Scholar 

  105. C. Park, P. Chou, Ambimax: autonomous energy harvesting platform for multi-supply wireless sensor nodes. Proceedings of the IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON) 1, 168–177 (2006)

    Google Scholar 

  106. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, M. Srivastava, Design considerations for solar energy harvesting wireless embedded systems. In Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks (ISPN), 2005, pp. 457–462

    Google Scholar 

  107. F. Simjee, P. Chou, Everlast: Long-life, supercapacitor-operated wireless sensor node. In Proceedings IEEE/ASM International Symposium on Low Power Electronics and Devices (ISLPED), Oct. 2006, pp. 197–202

    Google Scholar 

  108. H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, Efficient power management circuit: From thermal energy harvesting to above-ic microbattery energy storage. IEEE J. Solid-State Circuits 43(1), 246–255 (2008)

    Article  Google Scholar 

  109. E. O.Torres, C. Min, H. Forghani-zadeh, V. Gupta, N. Keskar, L. Milner, P. Hsuan-I, G. Rincon-Mora, Sip integration of intelligent, adaptive, self-sustaining power management solutions for portable applications. In Proceedings of the IEEE International Symposium Circuits and Systems (ISCAS), May 2006, pp. 4 pp. -5314

    Google Scholar 

  110. E.O. Torres, G.A. Rincon-Mora, Energy-harvesting system-in-package (sip) microsystem. ASCE J. Energy Eng. 134(4), 121–129 (2008)

    Article  Google Scholar 

  111. D. Kwon, G. Rincon-Mora, A rectifier-free piezoelectric energy harvester circuit. In Proceedings of the IEEE International Symposium Circuits and Systems (ISCAS), 2009, pp. 1085–1088

    Google Scholar 

  112. Y. Ramadass, A. Chandrakasan, An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid-State Circuits 45(1), 189–204 (2010)

    Article  Google Scholar 

  113. E. Aktakka, R. Peterson, K. Najafi, A self-supplied inertial piezoelectric energy harvester with power-management ic. In IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, Febraury 2011, pp. 120–121

    Google Scholar 

  114. E. Arroyo, A. Badel, Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction. Sensors Actuators A Phys. 171(2), 266–273 (2011)

    Article  Google Scholar 

  115. Y. Tan, S. Panda, Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Trans. Instr. Meas. 60(4), 1367–1377 (2011)

    Article  Google Scholar 

  116. D. Hoang, Y. Tan, H. Chng, S. Panda, Thermal energy harvesting from human warmth for wireless body area network in medical healthcare system. In Proceedings of the International Conference Power Electronics and Drive Systems (PEDS), 2009, pp. 1277–1282

    Google Scholar 

  117. G. Szarka, B. Stark, S. Burrow, Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 27(2), 803–815 (2012)

    Article  Google Scholar 

  118. D. Maurath, M. Ortmanns, Y. Manoli, Adaptive power extraction from micro generators with implicit voltage up-conversion. In Proceedings of the International PowerMEMS, 2007, pp. 281–284

    Google Scholar 

  119. D. Maurath, M. Raimann, Y. Manoli, Energie-adaptive autonome sensor-clients. In Proceedings of the VDE Mikrosystemtechnik Kongress, 2009, pp. 242–245

    Google Scholar 

  120. T. Starner, J. A. Paradiso, Chapter: Human generated power for mobile electronics. Low-Power Electronics Design - 1st edn. C. Piquet, Ed. (CRC Press, Boca Raton, 2004)

    Google Scholar 

  121. V. Pop, J. van de Molgenkraft, F. Schnitzler, J.P.R. van Schaijk, R. Vullers, Power optimization for wireless autonomous transducer solutions. Proceedings of PowerMEMS 2008, 141–144 (2008)

    Google Scholar 

  122. A. Sinha, A. Chandrakasan, Dynamic power management in wireless sensor networks. IEEE Des. Test Comput. 18(2), 62–74 (2001)

    Article  Google Scholar 

  123. A.P. Calhoun, Chandrakasan, Standby power reduction using dynamic voltage scaling and canary flip-flop structures. IEEE J. Solid-State Circuits 39(9), 1504–1511 (2004)

    Article  Google Scholar 

  124. A. Chandrakasan, D. Daly, J. Kwong, Y. Ramadass, Next generation micro-power systems. In Proceedings of the IEEE VLSI Circuits Symposium Digest of Technical Papers, 2008, pp. 2–5

    Google Scholar 

  125. V. von Kaenel, M. Pardoen, E. Dijkstra, E. Vittoz, Automatic adjustment of threshold and supply voltages for minimum power consumption in cmos digital circuits. In Proceedings of the IEEE/ASM International Symposium on Low Power Electronics and Devices (ISLPED), October 1994, pp. 78–79

    Google Scholar 

  126. J. Kao, M. Miyazaki, A. Chandrakasan, A 175-mv multiply-accumulate unit using an adaptive supply voltage and body bias architecture. IEEE J. Solid-State Circuits 37(11), 1545–1554 (2002)

    Article  Google Scholar 

  127. S. Jayapal, Y. Manoli, Minimizing energy consumption with variable forward body bias for ultra-low energy lsis (Automation and Test, Hsinchn, Taiwan, In Proceedings of the IEEE International Symposium on VLSI Design, 2007), pp. 1–4

    Google Scholar 

  128. F. Frustaci, M. Alioto, P. Corsonello, Tapered-vth approach for energy-efficient cmos buffers. IEEE Trans. Circuits Syst. I Reg. Papers 58(11), 2698–2707 (Nov. 2011)

    Google Scholar 

  129. Y. Ramadass, A. Chandrakasan, Minimum energy tracking loop with embedded dc-dc converter enabling ultra-low-voltage operation down to 250 mv in 65 nm cmos. IEEE J. Solid-State Circuits 43(1), 256–265 (2008)

    Article  Google Scholar 

  130. N. Lotze, Y. Manoli, A 62 mv 0.13 \(\mu \)m cmos standard-cell-based design technique using schmitt-trigger logic. IEEE J. Solid-State Circuits 47(1), 47–60 (2012)

    Article  Google Scholar 

  131. C. Moser, D. Brunelli, L. Thiele, Benini, Lazy scheduling for energy harvesting sensor nodes. J. Model Driven Des. Res. Manag. Distrib. Embed. Syst. 225, 125–134 (2006)

    Google Scholar 

  132. J. Steck, J. Su, Energy management and task scheduling of an energy harvesting, structural health monitoring system. 2008

    Google Scholar 

  133. P. Gray, P. Hurst, S. Lewis, R. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edn. (IEEE Press, Wiley-Interscience, 2001)

    Google Scholar 

  134. S. Hashemi, M. Sawan, Y. Savaria, A novel low-drop cmos active rectifier for rf-powered devices: experimental result. Microelectron. J. 40, 1547–1554 (2009)

    Article  Google Scholar 

  135. T. Le, J. Han, A. von Jouanne, K. Mayaram, T.S. Fiez, Piezoelectric micro-power generation interface circuits. IEEE J. Solid-State Circuits 41(6), 1411–1420 (2006)

    Article  Google Scholar 

  136. M. Ghovanloo, K. Najafi, Fully integrated wideband high-current rectifier for inductively powered devices. IEEE J. Solid-State Circuits 39(11), 1976–1984 (2004)

    Article  Google Scholar 

  137. S. Mandal, R. Sarpeshkar, Low-power cmos rectifier design for RFID applications. IEEE Trans. Circuits Syst. I Reg. Papers 54(6), 1177–1188 (Jun. 2007)

    Google Scholar 

  138. C. Peters, O. Kessling, F. Henrici, M. Ortmanns, Y. Manoli, Cmos integrated highly efficient full wave rectifier. Proceedings of the IEEE International Symposium Circuits and Systems (ISCAS) 27–30, 2415–2418 (2007)

    Google Scholar 

  139. L. R. Clare, S. G. Burrow, Power conditioning for energy harvesting. In Proceedings of the SPIE Active Passive Smart Struct. Integr. Syst., San Diego, CA, 2008, pp. 69 280A-1-69 280A–13

    Google Scholar 

  140. T. Lehmann, Y. Moghe, On-chip active power rectifiers for biomedical applications. In Proceedings of the IEEE International Symposium Circuits and Systems (ISCAS), 2005, pp. 732–735

    Google Scholar 

  141. C. Peters, M. Ortmanns, Y. Manoli, Low power high performance voltage rectifier for autonomous microsystems. In Proceedings of the PowerMEMS 2007. PowerMEMS, 2007, pp. 217–220

    Google Scholar 

  142. S. Guo, H. Lee, An efficiency-enhanced integrated cmos rectifier with comparator-controlled switches for transcutaneous powered implants. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), 2007, pp. 385–388

    Google Scholar 

  143. S. Xu, K. Ngo, T. Nishida, G. Chung, A. Sharma, Low frequency pulsed resonant converter for energy harvesting. IEEE Trans. Power Electron. 22(1), 63–68 (2007)

    Article  Google Scholar 

  144. D. Marinkovica, A. Frey, I. Kuehne, G. Scholla, A new rectifier and trigger circuit for a piezoelectric microgenerator. In Proceedings of the Eurosensors XXIII, 2009, pp. 1447–1450

    Google Scholar 

  145. G. Bawa, M. Ghovanloo, Analysis, design, implementation of a high-efficiency full-wave rectifier in standard cmos technology. Analog Integr. Circuits Signal Process. (Springer) 60(1–2), 71–81 (2009)

    Article  Google Scholar 

  146. Y. Ramadass, A. Chandrakasan, A batteryless thermoelectric energy-harvesting interface circuit with 35mv startup voltage. In IEEE International Solid-State Circuits Conf. (ISSCC) Digest of Technical Papers, San Francisco, CA, 2010, pp. 486–488

    Google Scholar 

  147. C. Peters, J. Handwerker, D. Maurath, Y. Manoli, A sub-500 mv highly efficient active rectifier for energy harvesting applications. IEEE Trans. Circuits Syst. I Reg. Papers 58(7), 1542–1550 (July 2011)

    Google Scholar 

  148. H. Lee, M. Ghovanloo, Fully integrated power-efficient ac-to-dc converter design in inductively-powered biomedical applications. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), September 2011, pp. 1–8

    Google Scholar 

  149. G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18(2), 696–703 (2003)

    Article  Google Scholar 

  150. G. Ottman, H. Hofmann, A. Bhatt, G. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17, 669–676 (2002)

    Article  Google Scholar 

  151. D. Guyomar, A. Badel, E. Lefeuvre, C. Richard, Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectrics Freq. Control 52(4), 584–595 (2005)

    Article  Google Scholar 

  152. E. Lefeuvre, A. Badel, C. Richard, D. Guyomar, Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. J. Intell. Mater. Syst. Struct. 16, 865–876 (2005)

    Article  Google Scholar 

  153. M. Lallart, D. Guyomar, An optimized self-powered switching circuit for non-linear energy harvesting with lowvoltage output. J. Smart Mater. Struct. 17(3), 1–8 (2008)

    Article  Google Scholar 

  154. C. Richard, D. Guyomar, D. Audigier, G. Ching, Semi passive damping using continuous switching of a piezoelectric devices. In Proceedings of the SPIE International Symposium on Smart Structures, 1999, pp. 104–111

    Google Scholar 

  155. T. Hehn, D. Maurath, F. Hagedorn, D. Marinkovic, I. Kuehne, A. Frey, Y. Manoli, A fully autonomous pulsed synchronous charge extractor for high-voltage piezoelectric harvesters. In Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC), September 2011, pp. 371–374

    Google Scholar 

  156. E. Dallago, D. Miatton, G. Venchi, V. Bottarel, G. Frattini, G. Ricotti, M. Schipani, Electronic interface for piezoelectric energy scavenging system. In Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC), 2008, pp. 402–405

    Google Scholar 

  157. L. Chao, C.-Y. Tsui, W.-H. Ki, Vibration energy scavenging and management for ultra low power applications. In Proceedings of the IEEE/ASM International Symposium on Low Power Electronics and Devices (ISLPED), 2007, pp. 316–319

    Google Scholar 

  158. J. Yi, F. Su, Y. -H. Lam, W. -H. Ki, C. -Y. Tsui, An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In Proceedings of the IEEE International Symposium Circuits and Systems (ISCAS), 2008, pp. 2570–2573

    Google Scholar 

  159. E. Lefeuvre, D. Audigier, D. Guyomar, Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Trans. Power Electron. 22(5), 2018–2025 (2007)

    Article  Google Scholar 

  160. T.T. Toh, P.D. Mitcheson, A.S. Holmes, E.M. Yeatman, A continuously rotating energy harvester with maximum power point tracking. J. Micromech. Microeng. 18(104008), 1–7 (2008)

    Google Scholar 

  161. N.J. Guilar, R. Amirtharajah, P.J. Hurst, A full-wave rectifier with integrated peak selection for multiple electrode piezoelectric energy harvesters. IEEE J. Solid-State Circuits 44(1), 140–246 (2009)

    Article  Google Scholar 

  162. B. Hoefflinger, CHIPS 2020 - A Guide to the Future of Nanoelectronics (Springer, Berlin, 2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Maurath .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maurath, D., Manoli, Y. (2015). Introduction. In: CMOS Circuits for Electromagnetic Vibration Transducers. Springer Series in Advanced Microelectronics, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9272-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9272-1_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9271-4

  • Online ISBN: 978-94-017-9272-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics