Skip to main content

No Laughing Matter: The Unmaking of the Greenhouse Gas Dinitrogen Monoxide by Nitrous Oxide Reductase

  • Chapter
  • First Online:

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 14))

Abstract

The gas nitrous oxide (N2O) is generated in a variety of abiotic, biotic, and anthropogenic processes and it has recently been under scrutiny for its role as a greenhouse gas. A single enzyme, nitrous oxide reductase, is known to reduce N2O to uncritical N2, in a two-electron reduction process that is catalyzed at two unusual metal centers containing copper. Nitrous oxide reductase is a bacterial metalloprotein from the metabolic pathway of denitrification, and it forms a 130 kDa homodimer in which the two metal sites CuA and CuZ from opposing monomers are brought into close contact to form the active site of the enzyme. CuA is a binuclear, valence-delocalized cluster that accepts and transfers a single electron. The CuA site of nitrous oxide reductase is highly similar to that of respiratory heme-copper oxidases, but in the denitrification enzyme the site additionally undergoes a conformational change on a ligand that is suggested to function as a gate for electron transfer from an external donor protein. CuZ, the tetranuclear active center of nitrous oxide reductase, is isolated under mild and anoxic conditions as a unique [4Cu:2S] cluster. It is easily desulfurylated to yield a [4Cu:S] state termed CuZ * that is functionally distinct. The CuZ form of the cluster is catalytically active, while CuZ * is inactive as isolated in the [3Cu1+:1Cu2+] state. However, only CuZ * can be reduced to an all-cuprous state by sodium dithionite, yielding a form that shows higher activities than CuZ. As the possibility of a similar reductive activation in the periplasm is unconfirmed, the mechanism and the actual functional state of the enzyme remain under debate. Using enzyme from anoxic preparations with CuZ in the [4Cu:2S] state, N2O was shown to bind between the CuA and CuZ sites, suggesting direct electron transfer from CuA to the substrate after its activation by CuZ.

Please cite as: Met. Ions Life Sci. 14 (2014) 177–210

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. M. H. Kroneck, in Biogeochemical Cycles of Elements, Vol. 43 of Metal Ions in Biological Systems, Eds A. Sigel, H. Sigel, R. K. O. Sigel, Taylor & Francis, Boca Raton, USA, 2005, pp. 1–7.

    Google Scholar 

  2. O. Einsle, P. M. H. Kroneck, Biol. Chem. 2004, 385, 875–883.

    Article  CAS  PubMed  Google Scholar 

  3. D. E. Canfield, A. N. Glazer, P. G. Falkowski, Science 2010, 330, 192–196.

    Article  CAS  PubMed  Google Scholar 

  4. O. Einsle, Methods Enzymol. 2011, 496, 399–422.

    Article  CAS  PubMed  Google Scholar 

  5. B. Kartal, W. J. Maalcke, N. M. de Almeida, I. Cirpus, J. Gloerich, W. Geerts, H. J. M. O. den Camp, H. R. Harhangi, E. M. Janssen-Megens, K. J. Francoijs, H. G. Stunnenberg, J. T. Keltjens, M. S. M. Jetten, M. Strous, Nature 2011, 479, 127–132.

    Article  CAS  PubMed  Google Scholar 

  6. R. Knowles, Microbiol. Rev. 1982, 46, 43–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. W. G. Zumft, Microbiol. Mol. Biol. Rev. 1997, 61, 533–616.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. D. C. Rees, F. A. Tezcan, C. A. Haynes, M. Y. Walton, S. Andrade, O. Einsle, J. B. Howard, Philos. Trans. R. Soc. A 2005, 363, 971–984.

    Article  CAS  Google Scholar 

  9. J. Priestley, Experiments and Observations on Different Kinds of Air, J. Johnson, London, 1774.

    Google Scholar 

  10. W. C. Trogler, Coord. Chem. Rev. 1999, 187, 303–327.

    Article  CAS  Google Scholar 

  11. W. G. Zumft, P. M. H. Kroneck, Adv. Microb. Physiol. 2007, 52, 107–225.

    Article  CAS  PubMed  Google Scholar 

  12. M. Leuenberger, U. Siegenthaler, Nature 1992, 360, 449–451.

    Article  CAS  Google Scholar 

  13. W. C. Trogler, J. Chem. Educ. 1995, 72, 973–976.

    Article  CAS  Google Scholar 

  14. J. T. Houghton, Climate Change 1996: The Science of Climate Change, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  15. O. Badr, S. D. Probert, Appl. Energ. 1993, 44, 197–231.

    Article  CAS  Google Scholar 

  16. A. R. Ravishankara, J. S. Daniel, R. W. Portmann, Science 2009, 326, 123–125.

    Article  CAS  PubMed  Google Scholar 

  17. P. O. Wennberg, R. C. Cohen, R. M. Stimpfle, J. P. Koplow, J. G. Anderson, R. J. Salawitch, D. W. Fahey, E. L. Woodbridge, E. R. Keim, R. S. Gao, C. R. Webster, R. D. May, D. W. Toohey, L. M. Avallone, M. H. Proffitt, M. Loewenstein, J. R. Podolske, K. R. Chan, S. C. Wofsy, Science 1994, 266, 398–404.

    Article  CAS  PubMed  Google Scholar 

  18. European Commission, in “Climate action: Commission proposes ratification of second phase of Kyoto Protocol”, 2013.

    Google Scholar 

  19. S. Rakshit, C. J. Matocha, M. S. Coyne, Soil Sci. Soc. Am. J. 2008, 72, 1070–1077.

    Article  CAS  Google Scholar 

  20. V. A. Samarkin, M. T. Madigan, M. W. Bowles, K. L. Casciotti, J. C. Priscu, C. P. Mckay, S. B. Joye, Nat. Geosci. 2010, 3, 341–344.

    Article  CAS  Google Scholar 

  21. G. A. Kowalchuk, J. R. Stephen, Annu. Rev. Microbiol. 2001, 55, 485–529.

    Article  CAS  PubMed  Google Scholar 

  22. R. A. Reimer, C. S. Slaten, M. Seapan, M. W. Lower, P. E. Tomlinson, Environ. Prog. 1994, 13, 134–137.

    Article  CAS  Google Scholar 

  23. J. Simon, O. Einsle, P. M. H. Kroneck, W. G. Zumft, FEBS Lett. 2004, 569, 7–12.

    Article  CAS  PubMed  Google Scholar 

  24. H. Iwasaki, T. Saigo, T. Matsubara, Plant Cell Physiol 1980, 21, 1573–1584.

    Article  CAS  PubMed  Google Scholar 

  25. T. Matsubara, W. G. Zumft, Arch. Microbiol. 1982, 132, 322–328.

    Article  CAS  Google Scholar 

  26. W. G. Zumft, T. Matsubara, FEBS Lett. 1982, 148, 107–112.

    Article  CAS  Google Scholar 

  27. K. Brown, K. Djinovic-Carugo, T. Haltia, I. Cabrito, M. Saraste, J. J. G. Moura, I. Moura, M. Tegoni, C. Cambillau, J. Biol. Chem. 2000, 275, 41133–41136.

    Article  CAS  PubMed  Google Scholar 

  28. K. Brown, M. Tegoni, M. Prudêncio, A. S. Pereira, S. Besson, J. J. G. Moura, I. Moura, C. Cambillau, Nat. Struct. Biol. 2000, 7, 191–195.

    Article  CAS  PubMed  Google Scholar 

  29. C. Sproer, E. Lang, P. Hobeck, J. Burghardt, E. Stackebrandt, B. J. Tindall, Int. J. Syst. Bacteriol. 1998, 48, 1445–1448.

    Article  Google Scholar 

  30. T. Haltia, K. Brown, M. Tegoni, C. Cambillau, M. Saraste, K. Mattila, K. Djinovic-Carugo, Biochem. J. 2003, 369, 77–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. K. Paraskevopoulos, S. V. Antonyuk, R. G. Sawers, R. R. Eady, S. S. Hasnain, J. Mol. Biol. 2006, 362, 55–65.

    Article  CAS  PubMed  Google Scholar 

  32. A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, Nature 2011, 477, 234–237.

    Article  CAS  PubMed  Google Scholar 

  33. P. Völkl, R. Huber, E. Drobner, R. Rachel, S. Burggraf, A. Trincone, K. O. Stetter, Appl. Environ. Microbiol. 1993, 59, 2918–2926.

    PubMed Central  PubMed  Google Scholar 

  34. E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659–3853.

    Article  CAS  PubMed  Google Scholar 

  35. C. C. Page, C. C. Moser, X. X. Chen, P. L. Dutton, Nature 1999, 402, 47–52.

    Article  CAS  PubMed  Google Scholar 

  36. S. Teraguchi, T. C. Hollocher, J. Biol. Chem. 1989, 264, 1972–1979.

    CAS  PubMed  Google Scholar 

  37. S. Dell’Acqua, S. R. Pauleta, E. Monzani, A. S. Pereira, L. Casella, J. J. G. Moura, I. Moura, Biochemistry 2008, 47, 10852–10862.

    Article  PubMed  Google Scholar 

  38. K. Mattila, T. Haltia, Proteins: Struct. Funct. Bioinform. 2005, 59, 708–722.

    Article  CAS  Google Scholar 

  39. I. V. Pearson, M. D. Page, R. J. M. van Spanning, S. J. Ferguson, J. Bacteriol. 2003, 185, 6308–6315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. J. Riester, W. G. Zumft, P. M. H. Kroneck, Eur. J. Biochem. 1989, 178, 751–762.

    Article  CAS  PubMed  Google Scholar 

  41. W. G. Zumft, P. M. H. Kroneck, Adv. Inorg. Chem. 1996, 11, 193–221.

    CAS  Google Scholar 

  42. P. Wunsch, H. Körner, F. Neese, R. J. M. van Spanning, P. M. H. Kroneck, W. G. Zumft, FEBS Lett. 2005, 579, 4605–4609.

    Article  CAS  PubMed  Google Scholar 

  43. C. L. Coyle, W. G. Zumft, P. M. H. Kroneck, H. Körner, W. Jakob, Eur. J. Biochem. 1985, 153, 459–467.

    Article  CAS  PubMed  Google Scholar 

  44. A. Wüst, L. Schneider, A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, Biol. Chem. 2012, 393, 1067–1077.

    Article  PubMed  Google Scholar 

  45. J. M. Charnock, A. Dreusch, H. Körner, F. Neese, J. Nelson, A. Kannt, H. Michel, C. D. Garner, P. M. H. Kroneck, W. G. Zumft, Eur. J. Biochem. 2000, 267, 1368–1381.

    Article  CAS  PubMed  Google Scholar 

  46. T. Rasmussen, B. C. Berks, J. Sanders-Loehr, D. M. Dooley, W. G. Zumft, A. J. Thomson, Biochemistry 2000, 39, 12753–12756.

    Article  CAS  PubMed  Google Scholar 

  47. S. Dell’Acqua, S. R. Pauleta, J. J. Moura, I. Moura, Philos. Trans. R. Soc. B 2012, 367, 1204–1212.

    Article  Google Scholar 

  48. M. J. Gauthier, B. Lafay, R. Christen, L. Fernandez, M. Acquaviva, P. Bonin, J. C. Bertrand, Int. J. Syst. Bacteriol. 1992, 42, 568–576.

    Article  CAS  PubMed  Google Scholar 

  49. M. Prudêncio, A. S. Pereira, P. Tavares, S. Besson, I. Cabrito, K. Brown, B. Samyn, B. Devreese, J. Van Beeumen, F. Rusnak, G. Fauque, J. J. G. Moura, M. Tegoni, C. Cambillau, I. Moura, Biochemistry 2000, 39, 3899–3907.

    Article  PubMed  Google Scholar 

  50. M. Prudêncio, A. S. Pereira, P. Tavares, S. Besson, I. Moura, J. Inorg. Biochem. 1999, 74, 267–267.

    Google Scholar 

  51. A. Pomowski, W. G. Zumft, P. M. H. Kroneck, O. Einsle, Acta Crystallogr. Sect. F Cryst. Comm. 2010, 66, 1541–1543.

    CAS  Google Scholar 

  52. P. M. H. Kroneck, W. A. Antholine, J. Riester, W. G. Zumft, FEBS Lett. 1988, 242, 70–74.

    Article  CAS  PubMed  Google Scholar 

  53. H. Beinert, Eur. J. Biochem. 1997, 245, 521–532.

    Article  CAS  PubMed  Google Scholar 

  54. R. Malkin, B. G. Malmström, Adv. Enzymol. Relat. Subj. Biochem. 1970, 33, 177–244.

    CAS  Google Scholar 

  55. P. M. Li, B. G. Malmström, S. I. Chan, FEBS Lett. 1989, 248, 210–211.

    Article  CAS  PubMed  Google Scholar 

  56. P. M. H. Kroneck, W. A. Antholine, J. Riester, W. G. Zumft, FEBS Lett. 1989, 248, 212–213.

    Article  CAS  PubMed  Google Scholar 

  57. N. J. Blackburn, M. E. Barr, W. H. Woodruff, J. Vanderooost, S. de Vries, Biochemistry 1994, 33, 10401–10407.

    Article  CAS  PubMed  Google Scholar 

  58. N. J. Blackburn, S. deVries, M. E. Barr, R. P. Houser, W. B. Tolman, D. Sanders, J. A. Fee, J. Am. Chem. Soc. 1997, 119, 6135–6143.

    Google Scholar 

  59. S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, Nature 1995, 376, 660–669.

    Article  CAS  PubMed  Google Scholar 

  60. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1995, 269, 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  61. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1996, 272, 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  62. M. Wilmanns, P. Lappalainen, M. Kelly, E. Sauer-Eriksson, M. Saraste, Proc. Natl. Acad. Sci. USA 1995, 92, 11955–11959.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. B. L. Vallee, R. J. P. Williams, Proc. Natl. Acad. Sci. USA 1968, 59, 498–505.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. R. P. Houser, V. G. Young, W. B. Tolman, J. Am. Chem. Soc. 1996, 118, 2101–2102.

    Article  CAS  Google Scholar 

  65. G. Henkel, A. Müller, S. Weissgräber, G. Buse, T. Soulimane, G. C. M. Steffens, H. F. Nolting, Angew. Chem. Int. Ed. 1995, 34, 1488–1492.

    Article  CAS  Google Scholar 

  66. F. Neese, W. G. Zumft, W. E. Antholine, P. M. H. Kroneck, J. Am. Chem. Soc. 1996, 118, 8692–8699.

    Article  CAS  Google Scholar 

  67. F. Neese, R. Kappl, J. Hüttermann, W. G. Zumft, P. M. H. Kroneck, J. Biol. Inorg. Chem. 1998, 3, 53–67.

    CAS  Google Scholar 

  68. B. Epel, C. S. Slutter, F. Neese, P. M. H. Kroneck, W. G. Zumft, I. Pecht, O. Farver, Y. Lu, D. Goldfarb, J. Am. Chem. Soc. 2002, 124, 8152–8162.

    Article  CAS  PubMed  Google Scholar 

  69. P. Wittung, B. Kallebring, B. G. Malmström, FEBS Lett. 1994, 349, 286–288.

    Article  CAS  PubMed  Google Scholar 

  70. M. Saraste, Q. Rev. Biophys. 1990, 23, 331–366.

    Article  CAS  PubMed  Google Scholar 

  71. E. T. Adman, Adv. Protein Chem. 1991, 42, 145–197.

    Article  CAS  PubMed  Google Scholar 

  72. C. R. Andrew, P. Lappalainen, M. Saraste, M. T. Hay, Y. Lu, C. Dennison, G. W. Canters, J. A. Fee, C. E. Slutter, N. Nakamura, J. Sanders-Loehr, J. Am. Chem. Soc. 1995, 117, 10759–10760.

    Article  CAS  Google Scholar 

  73. C. Dennison, E. Vijgenboom, S. de Vries, J. Vanderoost, G. W. Canters, FEBS Lett. 1995, 365, 92–94.

    Article  CAS  PubMed  Google Scholar 

  74. J. A. Farrar, A. J. Thomson, M. R. Cheesman, D. M. Dooley, W. G. Zumft, FEBS Lett. 1991, 294, 11–15.

    Article  CAS  PubMed  Google Scholar 

  75. P. Chen, S. I. Gorelsky, S. Ghosh, E. I. Solomon, Angew. Chem. Int. Edit. 2004, 43, 4132–4140.

    Article  CAS  Google Scholar 

  76. M. L. Alvarez, J. Y. Ai, W. G. Zumft, J. Sanders-Loehr, D. M. Dooley, J. Am. Chem. Soc. 2001, 123, 576–587.

    Article  CAS  PubMed  Google Scholar 

  77. T. Rasmussen, B. C. Berks, J. N. Butt, A. J. Thomson, Biochem. J. 2002, 364, 807–815.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. S. R. Pauleta, S. Dell’Acqua, I. Moura, Coord. Chem. Rev. 2013, 257, 332–349.

    Article  CAS  Google Scholar 

  79. S. W. Snyder, T. C. Hollocher, J. Biol. Chem. 1987, 262, 6515–6525.

    CAS  PubMed  Google Scholar 

  80. S. Dell’Acqua, S. R. Pauleta, P. M. Paes de Sousa, E. Monzani, L. Casella, J. J. Moura, I. Moura, J. Biol. Inorg. Chem. 2010, 15, 967–976.

    Article  PubMed  Google Scholar 

  81. E. M. Johnston, S. Dell’Acqua, S. Ramos, S. R. Pauleta, I. Moura, E. I. Solomon, J. Am. Chem. Soc. 2014, 136, 614–617.

    Article  CAS  PubMed  Google Scholar 

  82. S. Ghosh, S. I. Gorelsky, P. Chen, I. Cabrito, J. J. G. Moura, I. Moura, E. I. Solomon, J. Am. Chem. Soc. 2003, 125, 15708–15709.

    Article  CAS  PubMed  Google Scholar 

  83. S. I. Gorelsky, S. Ghosh, E. I. Solomon, J. Am. Chem. Soc. 2006, 128, 278–290.

    Article  CAS  PubMed  Google Scholar 

  84. T. V. O’Halloran, R. A. Pufhal, G. Munson, D. Huffman, Biochemistry 1996, 35, 110–110.

    Google Scholar 

  85. A. Viebrock, W. G. Zumft, J. Bacteriol. 1988, 170, 4658–4668.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. T. Palmer, B. C. Berks, Nat. Rev. Microbiol. 2012, 10, 483–496.

    CAS  PubMed  Google Scholar 

  87. R. Kranz, R. Lill, B. Goldman, G. Bonnard, S. Merchant, Mol. Microbiol. 1998, 29, 383–396.

    Article  CAS  PubMed  Google Scholar 

  88. V. A. M. Gold, F. Duong, I. Collinson, Mol. Membr. Biol. 2007, 24, 387–394.

    Article  CAS  PubMed  Google Scholar 

  89. U. Honisch, W. G. Zumft, J. Bacteriol. 2003, 185, 1895–1902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. P. Wunsch, W. G. Zumft, J. Bacteriol. 2005, 187, 1992–2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. M. A. McGuirl, J. A. Bollinger, N. Cosper, R. A. Scott, D. M. Dooley, J. Biol. Inorg. Chem. 2001, 6, 189–195.

    Article  CAS  PubMed  Google Scholar 

  92. L. M. Taubner, M. A. McGuirl, D. M. Dooley, V. Copie, Biochemistry 2006, 45, 12240–12252.

    Article  CAS  PubMed  Google Scholar 

  93. J. Y. Lee, J. G. Yang, D. Zhitnitsky, O. Lewinson, D. C. Rees, Science 2014, 343, 1133–1136.

    Article  CAS  PubMed  Google Scholar 

  94. V. Srinivasan, A. J. Pierik, R. Lill, Science 2014, 343, 1137–1140.

    Article  CAS  PubMed  Google Scholar 

  95. F. Leroux, S. Dementin, B. Burlatt, L. Cournac, A. Volbeda, S. Champ, L. Martin, B. Guigliarelli, P. Bertrand, J. Fontecilla-Camps, M. Rousset, C. Leger, Proc. Natl. Acad. Sci. USA 2008, 105, 11188–11193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Peter Kroneck, Walter Zumft, Jörg Simon, Sofia Pauleta, and Isabel Moura for stimulating discussions. This work was supported by Deutsche Forschungsgemeinschaft, Deutscher Akademischer Austauschdienst, the BIOSS Centre for Biological Signalling Studies, and the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Einsle .

Editor information

Editors and Affiliations

Abbreviations and Definitions

Abbreviations and Definitions

aa:

amino acid

anammox:

anaerobic ammonia oxidation

ATP:

adenosine 5′-triphosphate

CFC:

chlorofluorocarbon

DNRA:

dissimilatory nitrate reduction to ammonia

en:

ethylenediamine (= 1,2-diaminoethane)

EPR:

electron paramagnetic resonance

ENDOR:

electron nuclear double resonance

EXAFS:

extended X-ray absorption fine structure

LMCT:

ligand-to-metal charge transfer

LUMO:

lowest unoccupied molecular orbital

NADPH:

nicotinamide adenine dinucleotide phosphate (reduced)

NMR:

nuclear magnetic resonance

N2OR:

nitrous oxide reductase

NO x :

atmospheric nitrogen oxides (NO x =NO + NO2)

orf:

open reading frame

ppbv:

parts per billion by volume

Tat:

twin-arginine translocation

U:

unit of enzymatic activity (μmol (substrate) · min–1 · mg–1 (protein))

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schneider, L.K., Wüst, A., Pomowski, A., Zhang, L., Einsle, O. (2014). No Laughing Matter: The Unmaking of the Greenhouse Gas Dinitrogen Monoxide by Nitrous Oxide Reductase. In: Kroneck, P., Torres, M. (eds) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9269-1_8

Download citation

Publish with us

Policies and ethics