Skip to main content

Biochemistry of Methyl-Coenzyme M Reductase: The Nickel Metalloenzyme that Catalyzes the Final Step in Synthesis and the First Step in Anaerobic Oxidation of the Greenhouse Gas Methane

  • Chapter
  • First Online:
The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 14))

Abstract

Methane, the major component of natural gas, has been in use in human civilization since ancient times as a source of fuel and light. Methanogens are responsible for synthesis of most of the methane found on Earth. The enzyme responsible for catalyzing the chemical step of methanogenesis is methyl-coenzyme M reductase (MCR), a nickel enzyme that contains a tetrapyrrole cofactor called coenzyme F430, which can traverse the Ni(I), (II), and (III) oxidation states. MCR and methanogens are also involved in anaerobic methane oxidation. This review describes structural, kinetic, and computational studies aimed at elucidating the mechanism of MCR. Such studies are expected to impact the many ramifications of methane in our society and environment, including energy production and greenhouse gas warming.

Please cite as: Met. Ions Life Sci. 14 (2014) 125–145

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. W. Ragsdale, J. Inorg. Biochem. 2007, 101, 1657–1666.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. A. F. Miller, Acc. Chem. Res. 2008 , 41, 501–510.

    Article  CAS  PubMed  Google Scholar 

  3. C. Holliger, A. J. Pierik, E. J. Reijerse, W. R. Hagen, J. Am. Chem. Soc. 1993, 115, 5651–5656.

    Article  CAS  Google Scholar 

  4. D. A. Rodionov, P. Hebbeln, M. S. Gelfand, T. Eitinger, J. Bacteriol. 2006, 188, 317–327.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. S. Quiroz, J. K. Kim, S. B. Mulrooney, R. P. Hausinger, in Nickel and Its Surprising Impact in Nature, Vol. 2 of Metal Ions in Life Sciences, Eds A. Sigel, H. Sigel, R. K. O. Sigel, John Wiley and Sons, Chichester, UK, 2007, pp 519–544.

    Google Scholar 

  6. C. M. Phillips, E. R. Schreiter, Y. Guo, S. C. Wang, D. B. Zamble, C. L. Drennan, Biochemistry 2008, 47, 1938–1946.

    Article  CAS  PubMed  Google Scholar 

  7. S. K. Atreya, P. R. Mahaffy, A. S. Wong, Planet. Space Sci. 2007, 55, 358–369.

    Article  CAS  Google Scholar 

  8. U. Deppenmeier, Prog. Nucleic Acid Res. Mol. Biol. 2002, 71, 223–283.

    Article  CAS  PubMed  Google Scholar 

  9. R. K. Thauer, Microbiology 1998, 144, 2377–2406.

    Article  CAS  PubMed  Google Scholar 

  10. C. R. Woese, L. J. Magrum, G. E. Fox, J. Mol. Evol. 1978, 11, 245–251.

    Article  CAS  PubMed  Google Scholar 

  11. C. R. Woese, O. Kandler, M. L. Wheelis, Proc. Natl. Acad. Sci. USA 1990, 87, 4576–4579.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. G. E. Fox, E. Stackebrandt, R. B. Hespell, J. Gibson, J. Maniloff, T. A. Dyer, R. S. Wolfe, W. E. Balch, R. S. Tanner, L. J. Magrum, L. B. Zablen, R. Blakemore, R. Gupta, L. Bonen, B. J. Lewis, D. A. Stahl, K. R. Luehrsen, K. N. Chen, C. R. Woese, Science 1980, 209, 457–463.

    Article  CAS  PubMed  Google Scholar 

  13. R. K. Thauer, S. Shima, Ann. N. Y. Acad. Sci. 2008, 1125, 158–170.

    Article  CAS  PubMed  Google Scholar 

  14. J. L. Garcia, B. K. Patel, B. Ollivier, Anaerobe, 2000 6, 205–226.

    Article  CAS  PubMed  Google Scholar 

  15. R. S. Hanson, T. E. Hanson, Microbiol. Rev. 1996, 60, 439–471.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. S. J. Hallam, N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, E. F. DeLong, Science 2004, 305, 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  17. M. Kruger, A. Meyerdierks, F. O. Glockner, R. Amann, F. Widdel, M. Kube, R. Reinhardt, J. Kahnt, R. Bocher, R. K. Thauer, S. Shima, Nature 2003, 426, 878–881.

    Article  PubMed  Google Scholar 

  18. W. Michaelis, R. Seifert, K. Nauhaus, T. Treude, V. Thiel, M. Blumenberg, K. Knittel, A. Gieseke, K. Peterknecht, T. Pape, A. Boetius, R. Amann, B. B. Jorgensen, F. Widdel, J. Peckmann, N. V. Pimenov, M. B. Gulin, Science 2002, 297, 1013–1015.

    Article  CAS  PubMed  Google Scholar 

  19. K. Nauhaus, A. Boetius, M. Kruger, F. Widdel, Environ. Microbiol. 2002, 4, 296–305.

    Article  CAS  PubMed  Google Scholar 

  20. A. A. Raghoebarsing, A. Pol, K. T. van de Pas-Schoonen, A. J. Smolders, K. F. Ettwig, W. I. Rijpstra, S. Schouten, J. S. Damste, H. J. Op den Camp, M. S. Jetten, M. Strous, Nature 2006, 440, 918–921.

    Article  CAS  PubMed  Google Scholar 

  21. S. J. Hallam, P. R. Girguis, C. M. Preston, P. M. Richardson, E. F. DeLong, Appl. Environ. Microbiol. 2003, 69, 5483–5491.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. E. F. DeLong, Nature 2000, 407, 577–579.

    Article  CAS  PubMed  Google Scholar 

  23. D. R. Blake, F. Sherwood Rowland, Science 1988, 239, 1129–1131.

    Article  CAS  PubMed  Google Scholar 

  24. D. A. Lashoff, D. Ahuja, Nature 1990, 344, 213–242.

    Google Scholar 

  25. J. Schimel, Nature 2000, 403, 375, 377.

    Google Scholar 

  26. R. S. Wolfe, Am. Soc. Microbiol. News 1996, 62, 529–534.

    Google Scholar 

  27. H. A. Barker, Bacterial Fermentations, Wiley, New York, 1956.

    Google Scholar 

  28. N. L. Söhngen, Recl. Trav. Chim. Pays Bas. 1910, 29, 238–250.

    Article  Google Scholar 

  29. R. E. Hungate, in Methods in Microbiology, Eds J. R. Norris, D. W. Ribbons, Academic Press, Inc., New York, 1969, pp 117–132.

    Google Scholar 

  30. W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, R. S. Wolfe, Microbiol. Rev. 1979, 43, 260–296.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. R. S. Wolfe, Methods Enzymol. 2011, 494, 1–22.

    Article  CAS  PubMed  Google Scholar 

  32. J. G. Zeikus, R. S. Wolfe, J. Bacteriol. 1972, 109, 707–715.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. A. C. Rosenzweig, S. W. Ragsdale, Eds, Methods in Methane Metabolism, Vol. 494, Elsevier, Academic Press, Amsterdam, 2011.

    Google Scholar 

  34. A. A. DiMarco, T. A. Bobik, R. S. Wolfe, Ann. Rev. Biochem. 1990, 59, 355–394.

    Article  CAS  PubMed  Google Scholar 

  35. G. Diekert, B. Klee, R. K. Thauer, Arch. Microbiol. 1980 , 124, 103–106.

    Article  CAS  PubMed  Google Scholar 

  36. G. Diekert, R. Jaenchen, R. K. Thauer, FEBS Letters 1980, 119, 118–120.

    Article  CAS  PubMed  Google Scholar 

  37. W. B. Whitman, R. S. Wolfe, Biochem. Biophys. Res. Comm. 1980, 92, 1196–1201.

    Article  CAS  PubMed  Google Scholar 

  38. G. Diekert, U. Konheiser, K. Piechulla, R. K. Thauer, J. Bacteriol. 1981, 148, 459–464.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. J. Telser, in Structure and Bonding, Ed R. J. P. Williams, Springer Verlag, Heidelberg, 1998, pp 32–63.

    Google Scholar 

  40. B. Jaun, Met. Ions Biol. Syst. 1993, 29, 287–337.

    CAS  Google Scholar 

  41. J. Telser, J. Braz. Chem. Soc. 2010, 21, 1139–1157.

    Article  CAS  Google Scholar 

  42. A. Pfaltz, B. Juan, A. Fassler, A. Eschenmoser, R. Jaenchen, H. H. Gilles, G. Diekert, R. K. Thauer, Helv. Chim. Acta 1982, 65, 828–865.

    Article  CAS  Google Scholar 

  43. G. Färber, W. Keller, C. Kratky, B. Jaun, A. Pfaltz, C. Spinner, A. Kobelt, A. Eschenmoser, Helv. Chim. Acta 1991, 74, 697–716.

    Article  Google Scholar 

  44. H. Won, M. F. Summers, K. Olson, R. S. Wolfe, J. Am. Chem. Soc. 1990, 112, 2178–2184.

    Article  CAS  Google Scholar 

  45. W. L. Ellefson, W. B. Whitman, R. S. Wolfe, Proc. Natl. Acad. Sci. USA 1982, 79, 3707–3710.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. B. Jaun, Helv. Chim. Acta 1990, 73, 2209–2216.

    Article  CAS  Google Scholar 

  47. B. Jaun, A. Pfaltz, J. Chem. Soc., Chem. Comm. 1986, 1327–1329.

    Google Scholar 

  48. U. Ermler, W. Grabarse, S. Shima, M. Goubeaud, R. K. Thauer, Science 1997, 278, 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  49. W. G. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, J. Mol. Biol. 2000, 303, 329–344.

    Article  CAS  PubMed  Google Scholar 

  50. S. Shima, M. Krueger, T. Weinert, U. Demmer, J. Kahnt, R. K. Thauer, U. Ermler, Nature 2012, 481, 98–101.

    Article  CAS  Google Scholar 

  51. P. E. Cedervall, M. Dey, X. Li, R. Sarangi, B. Hedman, S. W. Ragsdale, C. M. Wilmot, J. Am. Chem. Soc. 2011, 133, 5626–5628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. W. G. Grabarse, F. Mahlert, E. C. Duin, M. Goubeaud, S. Shima, R. K. Thauer, V. Lamzin, U. Ermler, J. Mol. Biol. 2001, 309, 315–330.

    Article  CAS  PubMed  Google Scholar 

  53. P. E. Cedervall, M. Dey, A. R. Pearson, S. W. Ragsdale, C. M. Wilmot, Biochemistry 2010, 49, 7683–7693.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. S. Shima, E. Warkentin, R. K. Thauer, U. Ermler, J. Biosci. Bioeng. 2002 , 93, 519–530.

    Article  CAS  PubMed  Google Scholar 

  55. Y.-C. Horng, D. F. Becker, S. W. Ragsdale, Biochemistry 2001, 40, 12875–12885.

    Article  CAS  PubMed  Google Scholar 

  56. S. Ebner, B. Jaun, M. Goenrich, R. K. Thauer, J. Harmer, J. Am. Chem. Soc. 2010, 132, 567–575.

    Article  CAS  PubMed  Google Scholar 

  57. W. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, J. Mol. Biol. 2000, 303, 329–344.

    Article  CAS  PubMed  Google Scholar 

  58. T. Selmer, J. Kahnt, M. Goubeaud, S. Shima, W. Grabarse, U. Ermler, R. K. Thauer, J. Biol. Chem. 2000, 275, 3755–3760.

    Article  CAS  PubMed  Google Scholar 

  59. J. Kahnt, B. Buchenau, F. Mahlert, M. Kruger, S. Shima, R. K. Thauer, FEBS J. 2007, 274, 4913–4921.

    Article  CAS  PubMed  Google Scholar 

  60. H. Won, K. D. Olson, D. R. Hare, R. S. Wolfe, C. Kratky, M. F. Summers, J. Am. Chem. Soc. 1992, 114, 6880–6892.

    Article  CAS  Google Scholar 

  61. C. L. Hamilton, R. A. Scott, M. K. Johnson, J. Biol. Chem. 1989, 264, 11605–11613.

    CAS  PubMed  Google Scholar 

  62. B. Jaun, A. Pfaltz, J. Chem. Soc. Chem. Commun. 1988, 1327, 293–294.

    Article  Google Scholar 

  63. S.-K. Lin, B. Jaun, Helv. Chim. Acta 1992, 75, 1478–1490.

    Article  CAS  Google Scholar 

  64. S.-K. Lin, B. Jaun. Helv. Chim. Acta, 1991 74, 1725–1738.

    Google Scholar 

  65. Y. Zhou, D. A. Sliwa, S. W. Ragsdale, in Handbook of Porphyrin Science, Eds K. M. Kadish, K. M. Smith, R. Guilard, World Scientific Publishing, 2012, pp 1–42,

    Google Scholar 

  66. J. Telser, R. Davydov, Y. C. Horng, S. W. Ragsdale, B. M. Hoffman, J. Am. Chem. Soc. 2001, 123, 5853–5860.

    Article  CAS  PubMed  Google Scholar 

  67. F. Mahlert, C. Bauer, B. Jaun, R. K. Thauer, E. C. Duin, J. Biol. Inorg. Chem. 2002, 7, 500–513.

    Article  CAS  PubMed  Google Scholar 

  68. S. Rospert, R. Böcher, S. P. J. Albracht, R. K. Thauer, FEBS Lett. 1991, 291, 371–375.

    Article  CAS  PubMed  Google Scholar 

  69. E. C. Duin, N. J. Cosper, F. Mahlert, R. K. Thauer, R. A. Scott, J. Biol. Inorg. Chem. 2003, 8, 141–148.

    Article  CAS  PubMed  Google Scholar 

  70. Y. Zhou, A. E. Dorchak, S. W. Ragsdale, Front. Microbiol. Chem. 2013, 4, 69.

    Google Scholar 

  71. D. F. Becker, S. W. Ragsdale, Biochemistry 1998, 37, 2639–2647.

    Article  CAS  PubMed  Google Scholar 

  72. M. Goubeaud, G. Schreiner, R. K. Thauer, Eur. J. Biochem. 1997, 243, 110–114.

    Article  CAS  PubMed  Google Scholar 

  73. D. Hinderberger, S. Ebner, S. Mayr, B. Jaun, M. Reiher, M. Goenrich, R. K. Thauer, J. Harmer, J. Biol. Inorg. Chem. 2008, 13, 1275–1289.

    Article  CAS  PubMed  Google Scholar 

  74. R. Sarangi, M. Dey, S. W. Ragsdale. Biochemistry 2009, 48, 3146–3156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. D. I. Kern, M. Goenrich, B. Jaun, R. K. Thauer, J. Harmer, D. Hinderberger, J. Biol. Inorg. Chem. 2007, 12, 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  76. J. Harmer, C. Finazzo, R. Piskorski, S. Ebner, E. C. Duin, M. Goenrich, R. K. Thauer, M. Reiher, A. Schweiger, D. Hinderberger, B. Jaun, J. Am. Chem. Soc. 2008, 130, 10907–10920.

    Article  CAS  PubMed  Google Scholar 

  77. C. Finazzo, J. Harmer, C. Bauer, B. Jaun, E. C. Duin, F. Mahlert, M. Goenrich, R. K. Thauer, S. Van Doorslaer, A. Schweiger, J. Am. Chem. Soc. 2003 , 125, 4988–4989.

    Article  CAS  PubMed  Google Scholar 

  78. E. C. Duin, L. Signor, R. Piskorski, F. Mahlert, M. D. Clay, M. Goenrich, R. K. Thauer, B. Jaun, M. K. Johnson, J. Biol. Inorg. Chem. 2004, 9, 563–576.

    Article  CAS  PubMed  Google Scholar 

  79. J. L. Craft, Y.-C. Horng, S. W. Ragsdale, T. C. Brunold, J. Am. Chem. Soc. 2004, 126, 4068–4069.

    Article  CAS  PubMed  Google Scholar 

  80. M. Dey, X. Li, Y. Zhou, S. W. Ragsdale, Met. Ions Life Sci. 2010, 7, 71–110.

    Article  CAS  PubMed  Google Scholar 

  81. G. K. Lahiri, A. M. Stolzenberg, Inorg. Chem. 1993, 32, 4409–4413.

    Article  CAS  Google Scholar 

  82. M. Dey, J. Telser, R. C. Kunz, N. S. Lees, S. W. Ragsdale, B. M. Hoffman, J. Am. Chem. Soc. 2007, 129, 11030–11032.

    Article  CAS  PubMed  Google Scholar 

  83. N. Yang, M. Reiher, M. Wang, J. Harmer, E. C. Duin, J. Am. Chem. Soc. 2007, 129, 11028–11029.

    Article  CAS  PubMed  Google Scholar 

  84. R. C. Kunz, Y.-C. Horng, S. W. Ragsdale, J. Biol. Chem. 2006, 281, 34663–34676.

    Article  CAS  PubMed  Google Scholar 

  85. X. Li, J. Telser, B. M. Hoffman, G. Gerfen, S. W. Ragsdale, Biochemistry 2010, 49, 6866–6876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. B. Jaun, R. K. Thauer, Met. Ions Life Sci. 2009, 6, 115–132.

    Article  CAS  PubMed  Google Scholar 

  87. R. C. Kunz, M. Dey, S. W. Ragsdale, Biochemistry 2008, 47, 2661–2667.

    Article  CAS  PubMed  Google Scholar 

  88. J. Ellermann, A. Kobelt, A. Pfaltz, R. K. Thauer, FEBS Lett. 1987, 220, 358–362.

    Article  CAS  PubMed  Google Scholar 

  89. Y. Ahn, J. A. Krzycki, H. G. Floss, J. Am. Chem. Soc. 1991, 113, 4700–4701.

    Article  CAS  Google Scholar 

  90. S. Scheller, M. Goenrich, R. K. Thauer, B. Jaun, J. Am. Chem. Soc. 2013, 135, 14985–14995.

    Article  CAS  PubMed  Google Scholar 

  91. S. Scheller, M. Goenrich, R. K. Thauer, B. Jaun, J. Am. Chem. Soc. 2013, 135, 14975–14984.

    Article  CAS  PubMed  Google Scholar 

  92. V. Pelmenschikov, M. R. A. Blomberg, P. E. M. Siegbahn, R. H. Crabtree, J. Am. Chem. Soc. 2002, 124, 4039–4049.

    Article  CAS  PubMed  Google Scholar 

  93. M. Dey, X. Li, R. C. Kunz, S. W. Ragsdale, Biochemistry 2010, 49, 10902–10911.

    Article  CAS  PubMed  Google Scholar 

  94. M. Goenrich, F. Mahlert, E. C. Duin, C. Bauer, B. Jaun, R. K. Thauer, J. Biol. Inorg. Chem. 2004, 9, 691–705.

    Article  CAS  PubMed  Google Scholar 

  95. R. G. Matthews, Acc. Chem. Res. 2001, 34, 681–689.

    Article  CAS  PubMed  Google Scholar 

  96. S. W. Ragsdale, in The Porphyrin Handbook, Eds K. M. Kadish, K. M. Smith, R. Guilard, Academic Press, New York, 2003, pp 205–228.

    Google Scholar 

  97. D. Hinderberger, R. P. Piskorski, M. Goenrich, R. K. Thauer, A. Schweiger, J. Harmer, B. Jaun, Angew. Chem. Int. Ed. Engl. 2006, 45, 3602–3607.

    Article  CAS  PubMed  Google Scholar 

  98. M. Dey, R. C. Kunz, D. M. Lyons, S. W. Ragsdale, Biochemistry 2007, 46, 11969–11978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. A. Ghosh, T. Wondimagegn, H. Ryeng, Curr. Opin. Chem. Biol. 2001, 5, 744–750.

    Article  CAS  PubMed  Google Scholar 

  100. V. Pelmenschikov, P. E. Siegbahn, J. Biol. Inorg. Chem. 2003, 8, 653–662.

    Article  CAS  PubMed  Google Scholar 

  101. C. Finazzo, J. Harmer, B. Jaun, E. C. Duin, F. Mahlert, R. K. Thauer, S. Van Doorslaer, A. Schweiger, J. Biol. Inorg. Chem. 2003, 8, 586–593.

    CAS  PubMed  Google Scholar 

  102. S.-L. Chen, M. R. A. Blomberg, P. E. M. Siegbahn, Chem. Eur. J. 2012, 18, 6309–6315.

    Article  CAS  PubMed  Google Scholar 

  103. S. Scheller, M. Goenrich, R. Boecher, R. K. Thauer, B. Jaun, Nature 2010, 465, 606–608.

    Article  CAS  PubMed  Google Scholar 

  104. M. Dey, X. Li, R. C. Kunz, S. W. Ragsdale, Biochemistry 2010, 49, 10902–10911.

    Article  CAS  PubMed  Google Scholar 

  105. M. Goenrich, E. C. Duin, F. Mahlert, R. K. Thauer, J. Biol. Inorg. Chem. 2005, 10, 333–342.

    Article  CAS  PubMed  Google Scholar 

  106. C. A. Haynes, R. Gonzalez, Nat. Chem. Biol. 2014, 10, 331–339.

    Article  CAS  PubMed  Google Scholar 

  107. R. J. Conrado, R. Gonzalez, Science 2014, 343, 621–623.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank those students, postdoctoral fellows and collaborators who have been working on the biochemistry of methane formation, with special thanks to Dariusz Sliwa for helping to generate Figure 1 for this paper. I gratefully acknowledge support (DE-FG02-08ER15931) from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy and from ARPA-E (DE-AR0000426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Ragsdale .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

ACS:

acetyl-CoA synthase

AOM:

anaerobic oxidation of methane

bce:

before the common era = before Christ

BES:

bromoethanesulfonate

BPS:

bromopropanesulfonate

CNG:

compressed natural gas

CoA:

coenzyme A

CoBSH:

coenzyme B mercaptoheptanoylthreonine phosphate

CODH:

carbon monoxide dehydrogenase

CoMSH:

coenzyme M mercaptoethanesulfonate

DFT:

density functional theory

ENDOR:

electron nuclear double resonance

EPR:

electron paramagnetic resonance

ESEEM:

electron spin echo modulation

EXAFS:

extended X-ray absorption fine structure

HYSCORE:

hyperfine sublevel correlation spectroscopy

LNG:

liquid natural gas

MCD:

magnetic circular dichroism

MCR:

methyl-coenzyme M reductase

NHE:

normal hydrogen electrode

NMR:

nuclear magnetic resonance

SAM:

S-adenosylmethionine

SOD:

superoxide dismutase

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ragsdale, S.W. (2014). Biochemistry of Methyl-Coenzyme M Reductase: The Nickel Metalloenzyme that Catalyzes the Final Step in Synthesis and the First Step in Anaerobic Oxidation of the Greenhouse Gas Methane. In: Kroneck, P., Torres, M. (eds) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9269-1_6

Download citation

Publish with us

Policies and ethics