Skip to main content

Understanding and Harnessing Hydrogenases, Biological Dihydrogen Catalysts

  • Chapter
  • First Online:
The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 14))

Abstract

It has been estimated that 99 % of all organisms utilize dihydrogen (H2). Most of these species are microbes and their ability to use H2 as a metabolite arises from the expression of H2 metalloenzymes known as hydrogenases. These molecules have been the focus of intense biological, biochemical, and chemical research because hydrogenases are biotechnologically relevant enzymes.

Please cite as: Met. Ions Life Sci. 14 (2014) 99–124

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Shriver and Atkins’ Inorganic Chemistry, 5th edn., Oxford University Press, 2010.

    Google Scholar 

  2. W. Nitschke, S. E. McGlynn, E. J. Milner-White, M. J. Russell, Biochim. Biophys. Acta Bioenerg. 2013, 1827, 871–881.

    Article  CAS  Google Scholar 

  3. A. Volbeda, J. Fontecilla-Camps, in A Structural Perspective on Respiratory Complex I, Ed. L. Sazanov, Springer Netherlands, 2012, pp. 109–121.

    Google Scholar 

  4. F. Tian, O. B. Toon, A. A. Pavlov, H. De Sterck, Science 2005, 308, 1014–1017.

    Article  CAS  PubMed  Google Scholar 

  5. R. Wordsworth, R. Pierrehumbert, Science 2013, 339, 64–67.

    Article  CAS  PubMed  Google Scholar 

  6. P. Kharecha, J. Kasting, J. Siefert, Geobiology 2005, 3, 53–76.

    Article  CAS  Google Scholar 

  7. R. K. Thauer, A.-K. Kaster, M. Goenrich, M. Schick, T. Hiromoto, S. Shima, Annu. Rev. Biochem. 2010, 79, 507–536.

    Article  CAS  PubMed  Google Scholar 

  8. F. H. Chapelle, K. O’Neill, P. M. Bradley, B. A. Methe, S. A. Ciufo, L. L. Knobel, D. R. Lovley, Nature 2002, 415, 312–315.

    Article  PubMed  Google Scholar 

  9. M. K. Vollmer, S. Walter, J. Mohn, M. Steinbacher, S. W. Bond, T. Röckmann, S. Reimann, Atmos. Chem. Phys. 2012, 12, 6275–6289.

    Google Scholar 

  10. A. Jordan, B. Steinberg, Atmos. Meas. Tech. 2011, 4, 509–521.

    Article  CAS  Google Scholar 

  11. R. Lamichhane-Khadka, S. L. Benoit, S. E. Maier, R. J. Maier, Open Biol. 2013, 3.

    Google Scholar 

  12. L. Maier, R. Vyas, Carmen D. Cordova, H. Lindsay, Thomas Sebastian B. Schmidt, S. Brugiroux, B. Periaswamy, R. Bauer, A. Sturm, F. Schreiber, C. von Mering, Mark D. Robinson, B. Stecher, W.-D. Hardt, Cell Host Microbe 2013, 14, 641–651.

    Google Scholar 

  13. M. Stephenson, L. H. Stickland, Biochem. J. 1931, 25, 205–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. M. Stephenson, L. H. Stickland, Biochem. J. 1931, 25, 215–220.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. P. Constant, S. P. Chowdhury, L. Hesse, J. Pratscher, R. Conrad, Appl. Environ. Microbiol. 2011, 77, 6027–6035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. K. Aschenbach, R. Conrad, K. Reháková, J. Doležal, K. Janatková, R. Angel, Front. Microbiol. 2013, 4, doi: 10.3389/fmicb.2013.00359.

  17. H. Bothe, O. Schmitz, M. G. Yates, W. E. Newton, Microbiol. Mol. Biol. Rev. 2010, 74, 529–551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. J. M. Petersen, F. U. Zielinski, T. Pape, R. Seifert, C. Moraru, R. Amann, S. Hourdez, P. R. Girguis, S. D. Wankel, V. Barbe, E. Pelletier, D. Fink, C. Borowski, W. Bach, N. Dubilier, Nature 2011, 476, 176–180.

    Article  CAS  PubMed  Google Scholar 

  19. R. E. Macur, Z. J. Jay, W. P. Taylor, M. A. Kozubal, B. D. Kocar, W. P. Inskeep, Geobiology 2013, 11, 86–99.

    Article  CAS  PubMed  Google Scholar 

  20. P. M. Vignais, B. Billoud, Chem. Rev. 2007, 107, 4206–4272.

    Article  CAS  PubMed  Google Scholar 

  21. E. Oelgeschläger, M. Rother, Arch. Microbiol. 2008, 190, 257–269.

    Article  PubMed  Google Scholar 

  22. K. Schuchmann, V. Müller, Science 2013, 342, 1382–1385.

    Article  CAS  PubMed  Google Scholar 

  23. O. Lenz, M. Ludwig, T. Schubert, I. Bürstel, S. Ganskow, T. Goris, A. Schwarze, B. Friedrich, ChemPhysChem 2010, 11, 1107–1119.

    Article  CAS  PubMed  Google Scholar 

  24. F. E. Rey, M. D. Gonzalez, J. Cheng, M. Wu, P. P. Ahern, J. I. Gordon, PNAS 2013, 110, 13582–13587.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. F. Carbonero, A. C. Benefiel, H. R. Gaskins, Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 504–518.

    Article  CAS  PubMed  Google Scholar 

  26. J. K. DiBaise, H. Zhang, M. D. Crowell, R. Krajmalnik-Brown, G. A. Decker, B. E. Rittmann, Mayo Clin. Proc. 2008, 83, 460–469.

    Article  PubMed  Google Scholar 

  27. A. Strocchi, J. Furne, C. Ellis, M. D. Levitt, Gut 1994, 35, 1098–1101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. S. A. Angermayr, K. J. Hellingwerf, P. Lindblad, M. J. Teixeira de Mattos, Curr. Opin. Biotechnol. 2009, 20, 257–263.

    Article  CAS  PubMed  Google Scholar 

  29. C. Pinske, M. Jaroschinsky, F. Sargent, G. Sawers, BMC Microbiol. 2012, 12, 134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805–809.

    Article  CAS  PubMed  Google Scholar 

  31. T. A. Faunce, W. Lubitz, A. W. Rutherford, D. MacFarlane, G. F. Moore, P. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski, S. Styring, Energ. Environ. Sci. 2013, 6, 695–698.

    Article  Google Scholar 

  32. F. E. Osterloh, B. A. Parkinson, MRS Bulletin 2011, 36, 17–22.

    Article  CAS  Google Scholar 

  33. P. D. Tran, V. Artero, M. Fontecave, Energ. Environ. Sci. 2010, 3, 727–747.

    Article  CAS  Google Scholar 

  34. T. Sakai, D. Mersch, E. Reisner, Angew. Chem. Int. Ed. 2013, 52, 12313–12316.

    Article  CAS  Google Scholar 

  35. C. E. Lubner, P. Knörzer, P. J. N. Silva, K. A. Vincent, T. Happe, D. A. Bryant, J. H. Golbeck, Biochemistry 2010, 49, 10264–10266.

    Article  CAS  PubMed  Google Scholar 

  36. H. Krassen, A. Schwarze, B. R. Friedrich, K. Ataka, O. Lenz, J. Heberle, ACS Nano 2009, 3, 4055–4061.

    Article  CAS  PubMed  Google Scholar 

  37. E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2009, 131, 18457–18466.

    Article  CAS  PubMed  Google Scholar 

  38. M. Hambourger, M. Gervaldo, D. Svedruzic, P. W. King, D. Gust, M. Ghirardi, A. L. Moore, T. A. Moore, J. Am. Chem. Soc. 2008, 130, 2015–2022.

    Article  CAS  PubMed  Google Scholar 

  39. M. L. Ghirardi, M. C. Posewitz, P.-C. Maness, A. Dubini, J. Yu, M. Seibert, Annu. Rev. Plant Biol. 2007, 58, 71–91.

    Article  CAS  PubMed  Google Scholar 

  40. D. C. Ducat, J. C. Way, P. A. Silver, Trends Biotechnol. 2011, 29, 95–103.

    Article  CAS  PubMed  Google Scholar 

  41. R. Razeghifard, Photosynth. Res. 2013, 117, 207–219.

    Article  CAS  PubMed  Google Scholar 

  42. K. Gutekunst, X. Chen, K. Schreiber, U. Kaspar, S. Makam, J. Appel, J. Biol. Chem. 2014, 289, 1930–1937.

    Article  CAS  PubMed  Google Scholar 

  43. M. Ortega-Ramos, T. Jittawuttipoka, P. Saenkham, A. Czarnecka-Kwasiborski, H. Bottin, C. Cassier-Chauvat, F. Chauvat, PLoS One 2014, 9, e89372.

    Article  PubMed Central  PubMed  Google Scholar 

  44. A. Hemschemeier, A. Melis, T. Happe, Photosynth. Res. 2009, 102, 523–540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 2014, 114, 4081–4148.

    Article  CAS  PubMed  Google Scholar 

  46. J. Fritsch, O. Lenz, B. Friedrich, Nat. Rev. Microbiol. 2013, 11, 106–114.

    Article  CAS  PubMed  Google Scholar 

  47. A. Parkin, F. Sargent, Curr. Opin. Chem. Biol. 2012, 16, 26–34.

    Article  CAS  PubMed  Google Scholar 

  48. B. J. Murphy, F. Sargent, F. A. Armstrong, Energ. Environ. Sci. 2014, 7, 1426–1433.

    Article  CAS  Google Scholar 

  49. S. Krishnan, F. A. Armstrong, Chem. Sci. 2012, 3, 1015–1023.

    Article  CAS  Google Scholar 

  50. L. Xu, F. A. Armstrong, Energ. Environ. Sci. 2013, 6, 2166–2171.

    Article  CAS  Google Scholar 

  51. P. Constant, S. P. Chowdhury, J. Pratscher, R. Conrad, Environ. Microbiol. 2010, 12, 821–829.

    Article  CAS  PubMed  Google Scholar 

  52. C. Greening, M. Berney, K. Hards, G. M. Cook, R. Conrad, PNAS 2014, 111, 4257–4261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. C. Schäfer, B. Friedrich, O. Lenz, Appl. Environ. Microbiol. 2013, 79, 5137–5145.

    Article  PubMed Central  PubMed  Google Scholar 

  54. L. Lauterbach, O. Lenz, J. Am. Chem. Soc. 2013, 135, 17897–17905.

    Article  CAS  PubMed  Google Scholar 

  55. M. Horch, L. Lauterbach, O. Lenz, P. Hildebrandt, I. Zebger, FEBS Lett. 2012, 586, 545–556.

    Article  CAS  PubMed  Google Scholar 

  56. C. L. McIntosh, F. Germer, R. Schulz, J. Appel, A. K. Jones, J. Am. Chem. Soc. 2011, 133, 11308–11319.

    Article  CAS  PubMed  Google Scholar 

  57. P.-P. Liebgott, A. L. de Lacey, B. Burlat, L. Cournac, P. Richaud, M. Brugna, V. M. Fernandez, B. Guigliarelli, M. Rousset, C. Léger, S. Dementin, J. Am. Chem. Soc. 2010, 133, 986–997.

    Article  PubMed  Google Scholar 

  58. T. Lautier, P. Ezanno, C. Baffert, V. Fourmond, L. Cournac, J. C. Fontecilla-Camps, P. Soucaille, P. Bertrand, I. Meynial-Salles, C. Leger, Faraday Discuss. 2011, 148, 385–407.

    Article  CAS  PubMed  Google Scholar 

  59. C. S. A. Baltazar, M. C. Marques, C. M. Soares, A. M. DeLacey, I. A. C. Pereira, P. M. Matias, Eur. J. Inorg. Chem. 2011, 2011, 948–962.

    Article  Google Scholar 

  60. A. Parkin, G. Goldet, C. Cavazza, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2008, 130, 13410–13416.

    Article  CAS  PubMed  Google Scholar 

  61. R. M. Evans, A. Parkin, M. M. Roessler, B. J. Murphy, H. Adamson, M. J. Lukey, F. Sargent, A. Volbeda, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2013, 135, 2694–2707.

    Article  CAS  PubMed  Google Scholar 

  62. L. Forzi, R. G. Sawers, Biometals 2007, 20, 565–578.

    Article  CAS  PubMed  Google Scholar 

  63. S. T. Stripp, B. Soboh, U. Lindenstrauss, M. Braussemann, M. Herzberg, D. H. Nies, R. G. Sawers, J. Heberle, Biochemistry 2013, 52, 3289–3296.

    Article  CAS  PubMed  Google Scholar 

  64. I. Bürstel, P. Hummel, E. Siebert, N. Wisitruangsakul, I. Zebger, B. Friedrich, O. Lenz, J. Biol. Chem. 2011, 286, 44937–44944.

    Article  PubMed Central  PubMed  Google Scholar 

  65. J. Fritsch, E. Siebert, J. Priebe, I. Zebger, F. Lendzian, C. Teutloff, B. Friedrich, O. Lenz, J. Biol. Chem. 2014, 289, 7982–7993.

    Article  CAS  PubMed  Google Scholar 

  66. C. E. Foster, T. Krämer, A. F. Wait, A. Parkin, D. P. Jennings, T. Happe, J. E. McGrady, F. A. Armstrong, J. Am. Chem. Soc. 2012, 134, 7553–7557.

    Article  CAS  PubMed  Google Scholar 

  67. S. T. Stripp, G. Goldet, C. Brandmayr, O. Sanganas, K. A. Vincent, M. Haumann, F. A. Armstrong, T. Happe, PNAS 2009, 106, 17331–17336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. J. M. Kuchenreuther, W. K. Myers, D. L. M. Suess, T. A. Stich, V. Pelmenschikov, S. A. Shiigi, S. P. Cramer, J. R. Swartz, R. D. Britt, S. J. George, Science 2014, 343, 424–427.

    Article  CAS  PubMed  Google Scholar 

  69. S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. Meyer-Klaucke, E. Warkentin, R. K. Thauer, U. Ermler, Science 2008, 321, 572–575.

    Article  CAS  PubMed  Google Scholar 

  70. H. Tamura, M. Salomone-Stagni, T. Fujishiro, E. Warkentin, W. Meyer-Klaucke, U. Ermler, S. Shima, Angew. Chem. Int. Ed. 2013, 52, 9656–9659.

    Article  CAS  Google Scholar 

  71. M. Schick, X. Xie, K. Ataka, J. Kahnt, U. Linne, S. Shima, J. Am. Chem. Soc. 2012, 134, 3271–3280.

    Article  CAS  PubMed  Google Scholar 

  72. T. J. Lie, K. C. Costa, D. Pak, V. Sakesan, J. A. Leigh, FEMS Microbiol. Lett. 2013, 343, 156–160.

    Article  CAS  PubMed  Google Scholar 

  73. G. J. Kubas, Chem. Rev. 2007, 107, 4152–4205.

    Article  CAS  PubMed  Google Scholar 

  74. C. Tard, C. J. Pickett, Chem. Rev. 2009, 109, 2245–2274.

    Article  CAS  PubMed  Google Scholar 

  75. P. E. M. Siegbahn, J. W. Tye, M. B. Hall, Chem. Rev. 2007, 107, 4414–4435.

    Article  CAS  PubMed  Google Scholar 

  76. M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, Science 2011, 333, 863–866.

    Article  CAS  PubMed  Google Scholar 

  77. S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, Science 2013, 339, 682–684.

    Article  CAS  PubMed  Google Scholar 

  78. G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J. M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M. Fontecave, Nature 2013, 499, 66–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Y. A. Small, D. L. DuBois, E. Fujita, J. T. Muckerman, Energ. Environ. Sci. 2011, 4, 3008–3020.

    Article  CAS  Google Scholar 

  80. R. M. Bullock, A. M. Appel, M. L. Helm, Chem. Comm. 2014, 50, 3125–3143.

    Article  CAS  PubMed  Google Scholar 

  81. A. Pohlmann, W. F. Fricke, F. Reinecke, B. Kusian, H. Liesegang, R. Cramm, T. Eitinger, C. Ewering, M. Potter, E. Schwartz, A. Strittmatter, I. Vosz, G. Gottschalk, A. Steinbuchel, B. Friedrich, B. Bowien, Nat. Biotech. 2006, 24, 1257–1262.

    Article  Google Scholar 

  82. A. D. Poulpiquet, A. Ciaccafava, S. Benomar, M.-T. Giudici-Orticoni, E. Lojou, Carbon Nanotube-Enzyme Biohybrids in a Green Hydrogen Economy, Ed. S. Suzuki, InTech, http://www.intechopen.com/books/syntheses-and-applications-of-carbon-nanotubes-and-their-composites/carbon-nanotube-enzyme-biohybrids-in-a-green-hydrogen-economy, 2013.

  83. D. Black, “Solar Fuels and Artificial Photosynthesis”, Royal Society of Chemistry, www.rsc.org/solar-fuels, 2012.

  84. Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases, Eds P. M. H. Kroneck, M. E. Sosa Torres; Vol. 15 of Metal Ions in Life Sciences, Eds A. Sigel, H. Sigel, R. K. O. Sigel; Springer International Publishing AG, Cham, Switzerland, 2015, in press.

    Google Scholar 

Download references

Acknowledgment

A. Parkin would like to acknowledge the support provided by the University of York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Parkin .

Editor information

Editors and Affiliations

Abbreviations and Definitions

Abbreviations and Definitions

ATP:

adenosine 5′-triphosphate

Cys:

cysteine

E 0298 :

standard reduction potential at 298 K

E. coli :

Escherichia coli

EPR:

electron paramagnetic resonance

FeD :

distal iron

Fep :

proximal iron

FeGP:

Fe guanylylpyridinol

FeS:

iron sulfur

FTIR:

Fourier transform infrared

IR:

infrared

MBH:

membrane bound hydrogenase

MJ:

megaJoule

NADH:

nicotinamide adenine dinucleotide (reduced)

NADPH:

nicotinamide adenine dinucleotide phosphate (reduced)

NMR:

nuclear magnetic resonance

R. eutropha :

Ralstonia eutropha

SeCys:

selenocysteine

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parkin, A. (2014). Understanding and Harnessing Hydrogenases, Biological Dihydrogen Catalysts. In: Kroneck, P., Torres, M. (eds) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9269-1_5

Download citation

Publish with us

Policies and ethics