Skip to main content

Nanomechanics of Graphene Sheets

Registry Matrix Analysis and Interfacial Sliding

  • Chapter
  • First Online:
Trends in Nanoscale Mechanics
  • 1392 Accesses

Abstract

This chapter reviews basic structure of graphene sheets, interfacial sliding between adjacent graphene sheets, a nanoscale analog of the Newton’s friction law, registry effects between adjacent graphene sheets and their atomic lattices, registry matrices to describe interfacial registry in graphene stacking and the registry matrix analysis for the sliding of graphene sheets in nanoscale electronic devices. Interfacial sliding of graphene sheets depends on the interfacial registry potentials and the so called effect of the spatial exclusion of electrons (ESEE) at the interface of two graphene sheets, which can be viewed as the nanoscale analog of Pauli’s exclusion principle. Understanding of nanoscale sliding phenomena is critical for improving manufacturing technology for the single layer graphene sheets in nanoelectronic devices. Interfacial sliding between adjacent graphene sheets has been also described by a nanoscale analog of the Newton’s friction law for the nanoscale surface sliding mechanics and the associated stiction effects. Understanding of nanoscale sliding helps nanoscale cleaning and safety.

Dr. V. Harik, f. ICASE Staff Scientist at the NASA Langley Research Center (Hampton, VA), Principal Scientist at Nanodesign Consulting, author of a monograph and a short course entitled “Mechanics of Carbon Nanotubes” © (2001) presented at the Annual ASME Congress (2001 and 2004) and a co-editor of Kluwer volumes: “Trends in Nanoscale Mechanics” (2003) and “Micromechanics and Nanoscale Effects” (2004).

Nanodesigns Consulting is a 2004 spin-off from the NASA Langley Research Center, Hampton, Virginia. Its Staff consulted for the Princeton-based NASA-funded URETI Institute for Nanostructured Bio-inspired Materials (http://bimat.org), National Institute of Aerospace (Hampton, VA), University Space Research Association (USRA) and NASA NAIC (Atlanta, GA). Nanodesigns Consulting also works on safety of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The so called Brillouin zone is used to schematically represent the energy dispersion relation for the energy of states of the graphene lattice vibration waves, i.e., phonons, and the energy of states of the oscillating electrons.

  2. 2.

    The Bohr radius, a 0 = 0.529 Å is the most probable distance between a proton and an electron in the Hydrogen atom according to the Bohr’s planetary model of an atom.

  3. 3.

    The onset of the Ψ-registry configuration (Fig. 6a) is associated with the need of a π-electron to overcome the registry potential of the C–C bond and the associated Coulomb repulsion within the electron spatial exclusion (ESE) zone (see Harik [16]). The size of the ESE zone depends on the local atomic lattice configuration, the registry potential barriers, the nanoscale Coulomb repulsion proportional to 1/r2, and the nanoscale repulsion proportional to 1/r12. The combined effect results in the so called SEE effect. The nanoscale analog of Pauli exclusion of electrons is similar to the quantum Pauli principle for the identical particles with the spin ½ (fermions); the two identical particles cannot occupy the same energy state, as their combined wave function, ψ, is anti-symmetric. The nanoscale Coulomb repulsion, the nanoscale SEE repulsion and the quantum Pauli principle for the electrons all affect precise dimensions of the ESE zone.

  4. 4.

    This fundamental research was partially supported by the Princeton-based NASA-funded URETI Institute (http://bimat.org) for the Bio-inspired Nanostructured Multifunctional Materials (award No. NCC-1-02037).

  5. 5.

    In the late 15th century Leonardo da Vinci had identified the three important parts of friction as follows. “Friction is divided into three parts: these are simple, compound and disordered.” Simple friction is due to the motion and dragging; the compound friction is “between two immovable things” and the irregular friction is associated with the “corners of different sides.” For more details see the notebooks of Leonardo da Vinci [51], p. 527, and the following footnote.

  6. 6.

    The momentum of moving “things” has been also analyzed by Leonardo da Vinci [51], p. 543: “No impulse can end immediately but proceeds to consume itself through stages of movement.”

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nature 6, 183 (2007)

    Google Scholar 

  2. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nature 3, 36 (2006)

    Google Scholar 

  3. H. Raza, J. Phys.: Condens. Matter, 23, 382203 (2011)

    Google Scholar 

  4. S. Ihnatsenka, I.V. Zozoulenko, G. Kirczenow, Phys. Rev. B 80, 155415 (2009)

    Google Scholar 

  5. H. Raza, Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, Berlin, 2011)

    Google Scholar 

  6. V.M. Harik, Solid State Comm. 120(7–8), 331 (2001)

    Article  Google Scholar 

  7. V.M. Harik, Ranges of Applicability for the Continuum- Beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams? (NASA/CR-2001-211013, NASA Langley Research Center) (Hampton, Virginia, 2001)

    Google Scholar 

  8. V.M. Harik, Mechanics of Carbon Nanotubes (A Short Course Notes) (ASME Education Institute, American Society of Mechanical Engineers, New York, 2001)

    Google Scholar 

  9. V.M. Harik, Computational Mater. Sci. 24(3), 328 (2002)

    Article  Google Scholar 

  10. V.M. Harik, M. Salas (eds.), Trends in Nanoscale Mechanics (Kluwer Academic Publishers, The Netherlands, 2003)

    Google Scholar 

  11. A.N. Cleland, Foundations of Nanomechanics (Springer, Berlin, 2003)

    Google Scholar 

  12. V.M. Harik, L.-S. Luo (eds.), Micromechanics and Nanoscale Effects (Kluwer Academic Publishers, The Netherlands, 2004)

    Google Scholar 

  13. A.N. Kolmogorov, V.H. Crespi, Phys. Rev. Lett. 85(22), 4727 (2000)

    Google Scholar 

  14. K. Liao, S. Li, Appl. Phys. Lett. 79(25), 4225 (2001)

    Google Scholar 

  15. A.N. Kolmogorov, V.H. Crespi, Phys. Rev. B 71, 235415 (2005)

    Google Scholar 

  16. N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, Phys. Rev. Lett. 105, 046801 (2010)

    Google Scholar 

  17. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  18. S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel, J. Phys. Chem. B 106, 3046 (2002)

    Article  Google Scholar 

  19. S.J.V. Frankland, V.M. Harik, Surf. Sci. Lett. 525, L103 (2003)

    Google Scholar 

  20. S.J.V. Frankland, V.M. Harik, Mat. Res. Soc. Symp. Proc. 733 E, T6.2.1 (2002)

    Google Scholar 

  21. V.M. Harik, R.A. Cairncross, Mech. Mater. 32, 807 (2000)

    Google Scholar 

  22. S.J.V. Frankland, V.M. Harik, Mat. Res. Soc. Symp. Proc. 740, I12.1.1 (2002)

    Google Scholar 

  23. V.M. Harik, Mechanics of Carbon Nanotubes (Nanodesigns Press, Newark, Delaware, 2011)

    Google Scholar 

  24. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1999)

    Google Scholar 

  25. B.N.J. Persson, Surf. Sci. Reports, 33, 83 (1999)

    Google Scholar 

  26. Q.Y. Li, K.-S. Kim, Proc. Roy. Soc. A 464, 1319 (2008)

    Google Scholar 

  27. M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49(6), 705 (2000)

    Article  Google Scholar 

  28. P. Tangney, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97(19), 195901 (2006)

    Google Scholar 

  29. X.H. Zhang, G.E. Santoro, U. Tartaglino, E. Tosatti, Phys. Rev. Lett. 102(12), 125502 (2009)

    Google Scholar 

  30. M.J. Yang, V. Koutsos, M. Zaiser, J. Phys. Chem. B 109, 10009 (2005)

    Google Scholar 

  31. Q.B. Zheng, Q.Z. Xue, K.Y. Yan, L.Z. Hao, Q. Li, X.L. Gao, J. Phys. Chem. C 111, 4628 (2007)

    Google Scholar 

  32. M. Foroutan, A.T. Nasrabadi, J. Phys. Chem. B 114, 5320 (2010)

    Google Scholar 

  33. J. Krim, A. Widom, Phys. Rev. B 38, 12184 (1998)

    Google Scholar 

  34. C. Daly, J. Krim, Phys. Rev. Lett. 76, 803 (1996)

    Google Scholar 

  35. S. Morita, S. Fujisawa, Y. Sugawara, Surf. Sci. Reports 23, 1 (1996)

    Google Scholar 

  36. S. Okita, M. Ishikawa, K. Miura, Surf. Sci. 442, L959 (1999)

    Google Scholar 

  37. M.R. Falvo, R.M. Taylor, A. Helser, V. Chi, F.P. Brooks, S. Washburn, S. Superfine, Nature 397, 236 (1999)

    Article  Google Scholar 

  38. H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett. 72, 188 (1998)

    Google Scholar 

  39. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 12, 750 (1998)

    Google Scholar 

  40. A.H. Barber, S.R. Cohen, H.D. Wagner, Phys. Rev. Lett. 92, 186103 (2004)

    Google Scholar 

  41. A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl, Phys. Rev. Lett. 97(2), 025501 (2006)

    Google Scholar 

  42. B. Bhushan, J. Phys.: Condens. Matter. 20, 365214 (2008)

    Google Scholar 

  43. J. Servantie, P. Gaspard, Phys. Rev. Lett. 91, 185503 (2003)

    Google Scholar 

  44. J. Servantie, P. Gaspard, Phys. Rev. B 73, 125428 (2006)

    Google Scholar 

  45. Z. Xia, W.A. Curtin, Phys. Rev. B 69, 233408 (2004)

    Google Scholar 

  46. L. Li, Z.H. Xia, W.A. Curtin, Y.Q. Yang, Am. Ceram. Soc. 92(10), 2331 (2009)

    Google Scholar 

  47. A. Garg, S.B. Sinnott, Chem. Phys. Lett. 295, 273 (1998)

    Google Scholar 

  48. S.-J. Heo, S.B. Sinnott, J. Appl. Phys. 102, 064307 (2007)

    Google Scholar 

  49. L. Xu, T.-B. Ma, Y.-Z. Hu, H. Wang, Nanotechnology 22, 285708 (2011)

    Article  Google Scholar 

  50. M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49(6), 705 (2000)

    Google Scholar 

  51. E. MacCurdy (ed.), The Notebooks of Leonardo Da Vinci (Konecky and Konecky printing, Duckworth & Co., London, 1906)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl Harik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harik, V. (2014). Nanomechanics of Graphene Sheets. In: Harik, V. (eds) Trends in Nanoscale Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9263-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9263-9_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9262-2

  • Online ISBN: 978-94-017-9263-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics