Skip to main content

Molecular Modeling and Simulation of Physical Properties and Behavior of Low-Dimensional Carbon Allotropes

Carbon Nanotubes, Deformation and Fracture

  • Chapter
  • First Online:
Trends in Nanoscale Mechanics

Abstract

This chapter presents theoretical foundations and results of molecular modeling and simulation of carbon nanotubes, evaluation of their static and dynamic mechanical properties, radial buckling and deformation of the single wall carbon nanotubes (SWCNTs), their radial breathing vibrations, thermal effects and vibration modes. A review of molecular simulations of buckyballs and other low dimensional fullerenes is presented along with the fracture evolution for defective armchair SWCNTs.

“Learn matters of foreign lands and don’t shun those of your own.” T. Shevchenko (1814–1861), a great poet and educator of Eastern Europe. In 2014 we celebrate 200th anniversary of his birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Rodney S. Ruoff, J. Tersoff, C. Lorents, S. Subramoney, B. Chan, Radial deformation of carbon nanotubes by van der Waals forces. Nature 364, 514–516 (1993)

    Article  Google Scholar 

  3. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  4. M.F. Yu, T. Kowalewski, R.S. Ruoff, Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force. Phys. Rev. Lett. 85, 1456–1459 (2000)

    Article  Google Scholar 

  5. M. Fujii, X. Zhang, H. Xie, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005)

    Article  Google Scholar 

  6. J.F. Waters, P.R. Guduru, J.M. Xu, Nanotubes mechanics– recent progress in shell buckling mechanics and quantum electromechanical coupling. Compos. Sci. Technol. 66, 1141–1150 (2006)

    Article  Google Scholar 

  7. Z.R. Abrams, Y. Hanein, Radial deformation measurements of isolated pair of single-walled carbon nanotubes. Carbon 45, 738–743 (2007)

    Article  Google Scholar 

  8. S. Wei, C. Li, M.Y. Chou, Ab initio calculation of thermodynamic properties of silicon. Phys. Rev. B 50, 14587 (1994)

    Article  Google Scholar 

  9. J.P. Lu, Elastic properties of carbon nanotubes and nano-ropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  10. E. Hernandez, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998)

    Article  Google Scholar 

  11. G.H. Gao, T. Cagin, W.A. Goddard III, Energetic, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9, 184–191 (1998)

    Article  Google Scholar 

  12. G.V. Lier, C.V. Alsenoy, V.V. Doran, P. Geerlings, Ab initio study of the elastic properties of single-walled carbon nano-tubes and grapheme. Chem. Phys. Lett. 326, 181–185 (2000)

    Article  Google Scholar 

  13. G.Q. Xie, S.Y. Long, Elastic vibration behaviors of carbon nanotubes based on micropolar mechanics. Comput. Mater. Continua 4, 11–20 (2006)

    MATH  MathSciNet  Google Scholar 

  14. X. Ling, S.N. Atluri, A lattice-based cell model for calculating thermal capacity and expansion of single wall carbon nanotubes. Comput. Model. Eng. Sci. 14, 91–100 (2006)

    Google Scholar 

  15. L.V. Woodcock, Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett. 10, 257–261 (1971)

    Article  Google Scholar 

  16. F.F. Abraham, S.W. Koch, R.C. Desai, Computer-simulation dynamics of an unstable two-dimensional fluid: time-dependent morphology and scaling. Phys. Rev. Lett. 49, 923–926 (1982)

    Article  Google Scholar 

  17. H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384 (1980)

    Article  Google Scholar 

  18. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984)

    Article  Google Scholar 

  19. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  Google Scholar 

  20. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  Google Scholar 

  21. D.J. Evans, B.L. Holian, The Nose-Hoover thermostat. J. Chem. Phys. 83, 4069 (1985)

    Article  Google Scholar 

  22. G.J. Martyna, M.E. Tuckerman, M.L. Klein, Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992)

    Google Scholar 

  23. D.J. Tobias, G.J. Martyna, M.L. Klein, Molecular dynamics simulations of a protein in the canonical ensemble. J. Phys. Chem. 97(49), 12959–12966 (1993)

    Article  Google Scholar 

  24. S.D. Bond, B.J. Leimkuhler, B.B. Laird, The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151, 114–134 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Zare, V. Szebehely, Time transformations in the extended phase-space. Celest. Mech. 11, 469–482 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. M.E. Tuckerman, C.J. Mundy, G.J. Martyna, On the classical statistical mechanics of non-Hamiltonian systems. Europhys. Lett. 45, 149–155 (1999)

    Article  Google Scholar 

  27. I. László, Formation of cage-like C60 clusters in molecular-dynamics simulations. Europhys. Lett. 44, 741–746 (1998)

    Article  Google Scholar 

  28. N.R. Raravikar, P. Keblinski, A.M. Rao, M.S. Dresselhaus, L.S. Schadler, Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys. Rev. B 66, 235424 (2002)

    Article  Google Scholar 

  29. P.K. Schelling, P. Keblinski, Thermal expansion of carbon structures. Phys. Rev. B 68, 035425 (2003)

    Article  Google Scholar 

  30. Y.K. Kwon, S. Berber, D. Tomanek, Thermal contraction of carbon fullerenes and nanotubes. Phys. Rev. Lett. 92, 015901 (2004)

    Article  Google Scholar 

  31. D.A. Mcquarie, Statistical Mechanics. (Harper & Row Publishers, New York, 1976)

    Google Scholar 

  32. E. Lomba, D. Molina, M. Alvarez, Hubbard corrections in a tight-binding Hamiltonian for Se: effects on the band structure, local order, and dynamics. Phys. Rev. B 61, 9314–9321 (2000)

    Article  Google Scholar 

  33. S.G. Kim, D. Tománek, Melting the fullerenes: a molecular dynamics study. Phys. Rev. Lett. 72, 2418–2421 (1994)

    Article  Google Scholar 

  34. G.M. Odegard, T.S. Gates, L.M. Nicholson, K.E. Wise, Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  35. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511 (1996)

    Article  Google Scholar 

  36. V.M. Harik, Mechanics of carbon nanotubes: applicability of the continuum-beam models. Comput. Mater. Sci. 24(3), 328–342 (2002)

    Article  Google Scholar 

  37. C.Y. Wang, C.Q. Ru, A. Mioduchowski, Axially compressed buckling of pressured multiwall carbon nanotubes. Int. J. Solids Struct. 40, 3893–3911 (2003)

    Article  MATH  Google Scholar 

  38. A.N. Sohi, R. Naghdabadi, Torsional buckling of carbon nanopeapods. Carbon 45, 952–957 (2007)

    Article  Google Scholar 

  39. C.J. Wu, C.Y. Chou, C.N. Han, K.N. Chiang, Estimation and validation of elastic modulus of carbon nanotubes using nano-Scale tensile and vibrational analysis. Comput. Model. Eng. Sci. 41, 49–68 (2009)

    Google Scholar 

  40. C.Y. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solid Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  41. C.Y. Li, T.W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)

    Article  Google Scholar 

  42. N.A. Kasti, Zigzag carbon nanotubes-molecular/structural mechanics and finite element method. Int. J. Solid Struct. 44, 6914–6929 (2007)

    Article  MATH  Google Scholar 

  43. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, R.E, C60 : buckminsterfullerene. Nature 318, 162–163 (1985)

    Google Scholar 

  44. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)

    Article  Google Scholar 

  45. W.-H. Chen, C.-H. Wu, H.C. Cheng, Modified Nosé-Hoover thermostat for solid state for constant temperature molecular dynamics simulation. J. Comput. Phys. 230, 6354–6366 (2011a)

    Google Scholar 

  46. A. Maiti, G.D. Mahan, S.T. Pantelides, Dynamical simulations of nonequilibrium processes-heat flow and the Kapitza resistance across grain boundaries. Solid State Commun. 102, 51 (1997)

    Article  Google Scholar 

  47. W.-H. Chen, H.C. Cheng, Y.L. Liu, Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics. Comput. Mater. Sci. 47, 985–993 (2010)

    Article  Google Scholar 

  48. J.B. Marion, S.T. Thornton, Classical Dynamics of Particles and Systems, 5th edn. (Brooks/Cole, Belmont, 2004)

    Google Scholar 

  49. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)

    Article  Google Scholar 

  50. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  51. L.A. Girifalco, V.G. Weizer, Application of the morse potential function to cubic metals. Phys. Rev. 114, 687–690 (1959)

    Article  Google Scholar 

  52. S. Maruyama, Molecular dynamics method for microscale heat transfer. Adv. Numer. Heat Trans. 2, 189–226 (2000)

    MathSciNet  Google Scholar 

  53. J.E. Lennard-Jones, The determination of molecular fields. I. from the variation of the viscosity of a gas with temperature. Proc. Royal Soc. (Lond.) 106A, 441 (1924)

    Google Scholar 

  54. L. Battezzatti, C. Pisani, F. Ricca, Equilibrium conformation and surface motion of hydrocarbon molecules physisorbed on graphite. J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 71, 1629–1639 (1975)

    Google Scholar 

  55. J. Beeler, Displacement spikes in cubic metals. I. alpha-iron, copper, and tungsten. Phys. Rev. 150, 470–487 (1966)

    Article  Google Scholar 

  56. L. Verlet, Computer experiments on classical fluids. I. thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

  57. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    Google Scholar 

  58. M.E. Tuckerman, M. Parrinello, Integrating the Car-Parrinello equations. I. basic integration techniques. J. Chem. Phys. 101, 1302–1315 (1994)

    Article  Google Scholar 

  59. M.E. Tuckerman, Y. Liu, G. Ciccotti, G.J. Martyna, Non-Hamiltonian molecular dynamics: generalizing Hamiltonian phase space principles to non-Hamiltonian systems. J. Chem. Phys. 115, 1678–1702 (2001)

    Article  Google Scholar 

  60. R. Clausius, On a mechanical theory applicable to heat. Phil. Mag. 40, 122–127 (1870)

    Google Scholar 

  61. Z.S. Basinski, M.S. Duesbery, R. Taylor, Influence of shear stress on screw dislocations in a model sodium lattice. Can. J. Phys. 49, 2160–2180 (1971)

    Article  Google Scholar 

  62. S. Shen, S.N. Atluri, Atomic-level stress calculation and continuum-molecular system equivalence. Comput. Model. Eng. Sci. 6, 91–104 (2004)

    Article  MATH  Google Scholar 

  63. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz Jr, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  64. T.C. Chang, H.J. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  65. R.M. Badger, A relation between internuclear distances and bond force constants. J. Chem. Phys. 2, 128–131 (1934)

    Article  Google Scholar 

  66. W. Shen, B. Jiang, B.S. Han, S.-S. Xie, Investigation of the radial compression of carbon nanotubes with a scanning probe microscope. Phys. Rev. Lett. 84, 3634–3637 (2000)

    Article  Google Scholar 

  67. C.Y. Li, T.W. Chou, Elastic properties of single-walled carbon nanotubes in transverse directions. Phys. Rev. B 69, 073401 (2004)

    Article  Google Scholar 

  68. C.Y. Li, T.W. Chou, Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36, 1047–1055 (2004)

    Article  Google Scholar 

  69. L. Muthaswami, Y. Zheng, R. Vajtai, G. Shehkawat, P. Ajayan, R.E. Geer, Variation of radial elasticity in multiwalled carbon nanotubes. Nano Lett. 7, 3891–3894 (2007)

    Google Scholar 

  70. X.-F. Wang, Z.-J. Xu, Z.-Y. Zhu, Reversible mechanical bistability of carbon nanotubes under radial compression. Chem. Phys. 334, 144–147 (2007)

    Article  Google Scholar 

  71. V.N. Popov, V.E. Van Doren, M. Balkamski, Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61, 3078–3084 (2000)

    Article  Google Scholar 

  72. W.-H. Chen, H.C. Cheng, Y.-C. Hsu, Mechanical properties of carbon nanotubes using molecular dynamics simulations with the inlayer van der Waals interactions. Comput. Model. Eng. Sci. 20, 123–145 (2007)

    Google Scholar 

  73. M. Milnera, J. Kürti, M. Hulman, H. Kuzmany, Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 1324–1327 (2000)

    Article  Google Scholar 

  74. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001)

    Article  Google Scholar 

  75. J. Kürti, V. Zólyomi, M. Kertesz, G.Y. Sun, The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour. New J. Phys. 5, 125.1–125.12 (2003)

    Google Scholar 

  76. A.G. Souza Filho, S.G. Chou, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, L. An, J. Liu, A.K. Swan, M.S. Ünlü, B.B. Goldberg, A. Jorio, A. Grüneis, R. Saito, Stokes and anti-stokes Raman spectra of small diameter isolated carbon nanotubes. Phys. Rev. B 69, 115428 (2004)

    Google Scholar 

  77. M. Damnjanović, E. Dobardžić, I. Miloŝević, Chirality dependence of the radial breathing mode: a simple model. J. Phys. Condens. Matter 16, L505–L508 (2004)

    Article  Google Scholar 

  78. J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005)

    Article  Google Scholar 

  79. H.C. Cheng, Y.-L. Liu, C.-H. Wu, W.-H. Chen, On radial breathing vibration of carbon nanotubes. Comput. Methods Appl. Mech. Eng. 199, 2820–2827 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  80. Y.C. Zhang, X. Chen, X. Wang, Effect of temperature on mechanical properties of multi-walled carbon nanotubes. Compos. Sci. Technol. 68, 572 (2008)

    Article  Google Scholar 

  81. H. Jiang, B. Liu, Y. Huang, K.C. Hwang, Thermal expansion of single-wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265–270 (2004)

    Article  Google Scholar 

  82. G. Cao, X. Chen, J.W. Kysar, contraction of single-walled carbon nanotubes. J. Mech. Phys. Solids 54, 1206–1236 (2006)

    Article  MATH  Google Scholar 

  83. P. Poncharal, Z.L. Wang, D. Ugarte, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  84. S.S. Rao, Mechanical Vibrations, 4th edn. (Addison Wesley, USA, 2004)

    Google Scholar 

  85. W.C. Liu, Y.D. Kuang, F.Y. Meng, S.Q. Shi, Temperature effects on mechanical properties of the (3,3) carbon nanotube X-junctions. Comput. Mater. Sci. 49, 916–919 (2011)

    Article  Google Scholar 

  86. G. Zhou, W. Duan, B. Gu, Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes. Phys. Rev. Lett. 87, 095504 (2001)

    Article  Google Scholar 

  87. H.C. Cheng, Y.-L. Liu, Y.-C. Hsu, W.-H. Chen, Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solid Struct. 46, 1695–1704 (2009)

    Article  MATH  Google Scholar 

  88. B.I. Yakobson, G. Samsonidze, G.G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38, 1675–1680 (2000)

    Article  Google Scholar 

  89. A. Hashimoto, K. Suennaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004)

    Article  Google Scholar 

  90. S.L. Mielke, D. Troya, S. Zhang, J.L. Li, S. Xiao, R. Car, R.S. Ruoff, G.C. Schatz, T. Belytschko, The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004)

    Article  Google Scholar 

  91. M. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, R. Ruoff, Strength and breaking mechanism of multiwalled carbon nano-tubes under tensile load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  92. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  Google Scholar 

  93. K.I. Tserpes, P. Papanikos, S.A. Tsirkas, A progressive fracture model for carbon nanotubes. Compos. B 37, 662–669 (2006)

    Google Scholar 

  94. J. Steinbeck, G. Braunstein, M.S. Dresselhaus, T. Venkatesan, D.C. Jacobson, A model for pulsed laser melting of graphite. J. Appl. Phys. 58, 4374–4382 (1985)

    Article  Google Scholar 

  95. F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A 156, 169–178 (1989)

    Article  Google Scholar 

  96. J.M. Zazula, CERN LHC Project Note 78 (1997)

    Google Scholar 

  97. T.H. Fang, W.J. Chang, Phase transformation of fullerenes using molecular dynamics simulation. Microelectron. J. 35, 581–583 (2004)

    Article  Google Scholar 

  98. J.M. Haile, Molecular Dynamics Simulation. (Wiley, New York, 1997)

    Google Scholar 

  99. J.D. Gale, A.L. Rohl, The general utility lattice program. Mol. Simul. 29, 291 (2003)

    Article  MATH  Google Scholar 

  100. F. Gugenberger, R. Heid, C. Meingast, P. Adelmann, M. Braun, H. Wuhl, M. Haluska, H. Kuzmany, Glass transition in single-crystal C60 studied by high-resolution dilatometry. Phys. Rev. Lett. 69, 3774–3777 (1992)

    Article  Google Scholar 

  101. A.N. Aleksandrovskii, A.V. Dolbin, V.B. Esel’son, V.G. Gavrilko, V.G. Manzhelii, B.G. Udovidchenko, A.S. Bakai, G.E. Gadd, S. Moricca, B. Sundqvist, Low-temperature thermal expansion of pure and inert-gas-doped fullerite C60. Low Temp. Phys. 29, 324–332 (2003)

    Article  Google Scholar 

  102. T. Hamanaka, R. Yamamoto, A. Onuki, Molecular dynamics simulation of heat conduction in near-critical fluids. Phys. Rev. E 71, 011507 (2005)

    Article  Google Scholar 

  103. V.I. Zubov, J.F. Sanchez, N.P. Tretjakov, A.A. Caparica, I.V. Zubov, Isotherms, thermodynamic properties and stability of the FCC phase of the C60 fullerite: A theoretical study. Carbon 35, 729–734 (1997)

    Article  Google Scholar 

  104. F.P. Bundy, Melting of graphite at very high pressure. J. Chem. Phys. 38, 618–630 (1963)

    Article  Google Scholar 

  105. J.R. Chelikowsky, Nucleation of C60 clusters. Phys. Rev. Lett. 67, 2970–2973 (1991)

    Article  Google Scholar 

  106. W.-H. Chen, Y.-L. Liu, C.-H. Wu, H.C. Cheng, A theoretical investigation of thermal effects on vibrational behaviors of single-walled carbon nanotubes. Comput. Mater. Sci. 53, 226–233 (2012)

    Article  Google Scholar 

  107. H.C. Cheng, Y.-C. Hsu, W.-H. Chen, The Influence of Structural Defect on Mechanical Properties and Fracture Behaviors of Carbon Nanotubes. J. Comput. Mater. Continua 11, 127–146 (2009)

    Google Scholar 

  108. W.-H. Chen, C.-H. Wu, H.C. Cheng, Temperature-dependent thermodynamic behaviors of carbon fullerene molecules at atmospheric pressure. J. Comput. Mater. Continua 25, 195–214 (2011)

    Google Scholar 

  109. T. Hertel, R.E. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58, 13870–13873 (1998)

    Google Scholar 

  110. E. Dobardžić, I. Milošević, B. Nikolić, T. Vuković, M. Damnjanović, Single-wall carbon nanotubes phonon spectra: symmetry-based calculations. Phys. Rev. B 68, 045408 (2003)

    Article  Google Scholar 

  111. V.M. Harik, Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods. Solid State Commun. 120(7–8), 331–335 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciation to the National Science Council, Taiwan, ROC, for the financial support under grants NSC95-2221-E-007-013-MY3, NSC98-2221-E-007-016-MY3, NSC100-2221-E-035-036-MY3 and NSC101-2221-E-007-009-MY3. Great thanks are also conveyed to our former graduate students: Dr. Yu-Chen Hsu and Dr. Chun-Hung Wu at Taiwan Semiconductor Manufacturing Co., Hsinchu, Taiwan, ROC, and Dr. Yang-Lun Liu at Industrial Technology Research Institute, Hsinchu, Taiwan, ROC, for their great contribution to the work. The authors are also grateful to their graduate student, Mr. Ching-Feng Yu, revision and corrections as well as colleagues [109111].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, WH., Cheng, HC. (2014). Molecular Modeling and Simulation of Physical Properties and Behavior of Low-Dimensional Carbon Allotropes. In: Harik, V. (eds) Trends in Nanoscale Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9263-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9263-9_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9262-2

  • Online ISBN: 978-94-017-9263-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics