Skip to main content

Cheminformatics: At the Crossroad of Eras

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 17))

Abstract

In this chapter, we discuss how the profusion of experimental chemogenomics data available in public repositories is transforming the field of cheminformatics. In particular, we describe (i) both theoretical and technical challenges related to the management, analysis, and visualization of large and diverse chemical datasets, (ii) the unique opportunities offered by Big Chemical Data for designing molecules with the desired properties and expanding the use of cheminformatics in novel areas of research, and (iii) some innovative approaches that are likely to shape the future of cheminformatics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chute CG, Ullman-Cullere M, Wood GM, Lin SM, He M, Pathak J (2013) Some experiences and opportunities for big data in translational research. Genet Med 15:802–809

    Article  Google Scholar 

  2. Moore KD, Eyestone K, Coddington DC (2013) The big deal about big data. Healthc Financ Manage 67:60–68

    Google Scholar 

  3. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488

    Article  CAS  Google Scholar 

  4. Varnek A, Fourches D, Sieffert N, Solov’ev VP, Hill C, Lecomte M (2007) QSPR Modeling of the Am III/Eu III separation factor: how far can we predict? J Solv Extr Ion Exch 25:1–26

    Article  CAS  Google Scholar 

  5. Varnek A, Fourches D, Solov’ev V, Klimchuk O, Ouadi A, Billard I (2007) Successful “In Silico” design of new efficient uranyl binders. J Solv Extr Ion Exch 25:433–462

    Article  CAS  Google Scholar 

  6. Carnero A (2006) High throughput screening in drug discovery. Clin Transl Oncol 8:482–490

    Article  CAS  Google Scholar 

  7. Kozikowski AP, Roth B, Tropsha A (2006) Why academic drug discovery makes sense. Science 313:1235–1236

    Article  CAS  Google Scholar 

  8. Bajorath J (2013) A perspective on computational chemogenomics. Mol Inform 32:1025–1028

    Google Scholar 

  9. Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets for known drugs. Nature 462:175–181

    Article  CAS  Google Scholar 

  10. Xie X-Q (2010) Exploiting PubChem for virtual screening. Expert Opin Drug Discov 5:1205–1220

    Article  CAS  Google Scholar 

  11. Williams AJ (2014) Introduction to Chemspider. http://www.chemspider.com/help-what-can-i-do-with-chemspider.aspx. Accessed 8 Nov 2014.

  12. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  Google Scholar 

  13. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB (2013) Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol 26:878–895

    Article  CAS  Google Scholar 

  14. Huang R, Sakamuru S, Martin MT et al (2014) Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep 4:5664–5673

    Google Scholar 

  15. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121:756–765

    Article  Google Scholar 

  16. Knudsen TB, Martin MT, Kavlock RJ, Judson RS, Dix DJ, Singh AV (2009) Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA’s ToxRefDB. Reprod Toxicol 28:209–219

    Article  CAS  Google Scholar 

  17. Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res 40:D876–D880

    Article  Google Scholar 

  18. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  Google Scholar 

  19. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27:675–679

    Article  CAS  Google Scholar 

  20. Ruddigkeit L, Blum LC, Reymond J-L (2013) Visualization and virtual screening of the chemical universe database GDB-17. J Chem Inf Model 53:56–65

    Article  CAS  Google Scholar 

  21. Jorgensen WL (2006) QSAR/QSPR and proprietary data. J Chem Inf Model 46:937–937

    Article  CAS  Google Scholar 

  22. Young D, Martin D, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27:1337–1345

    Article  CAS  Google Scholar 

  23. Ekins S, Olechno J, Williams AJ (2013) Dispensing processes impact apparent biological activity as determined by computational and statistical analyses. PLoS One 8:e62325

    Article  CAS  Google Scholar 

  24. Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10:712

    Article  CAS  Google Scholar 

  25. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204

    Article  CAS  Google Scholar 

  26. Baker NC, Hemminger BM (2010) Mining connections between chemicals, proteins, and diseases extracted from Medline annotations. J Biomed Inform 43:510–519

    Article  CAS  Google Scholar 

  27. Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A (2010) Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol 23:171–183

    Article  CAS  Google Scholar 

  28. Low Y, Uehara T, Minowa Y et al (2011) Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol 24:1251–1262

    Article  CAS  Google Scholar 

  29. Low Y, Sedykh AY, Fourches D, Golbraikh A, Whelan M, Rusyn I, Tropsha A (2013) Integrative chemical-biological read-across approach for chemical hazard classification. Chem Res Toxicol 26:1199–1208

    Article  CAS  Google Scholar 

  30. Donaldson K, Poland CA (2009) Nanotoxicology: new insights into nanotubes. Nat Nanotechnol 4:708–710

    Article  CAS  Google Scholar 

  31. Balbus JM, Florini K, Denison RA, Walsh SA (2006) Getting it right the first time: developing nanotechnology while protecting workers, public health, and the environment. Ann N Y Acad Sci 1076:331–342

    Article  Google Scholar 

  32. Hart P (2009) Nanotechnology, synthetic biology, & public opinion. The Woodrow Wilson International Center For Scholars

    Google Scholar 

  33. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  CAS  Google Scholar 

  34. Jones R (2009) Nanotechnology, energy and markets. Nat Nanotechnol 4:75

    Article  CAS  Google Scholar 

  35. Lockman PR, Mumper RJ, Khan MA, Allen DD (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 28:1–13

    Article  CAS  Google Scholar 

  36. Linkov I, Satterstrom FK, Corey LM (2008) Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine 4:167–171

    Article  CAS  Google Scholar 

  37. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A (2010) Quantitative nanostructure-activity relationship modeling. ACS Nano 4:5703–5712

    Article  CAS  Google Scholar 

  38. Fourches D, Pu D, Tropsha A (2011) Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles. Comb Chem High Throughput Screen 14:217–225

    Article  CAS  Google Scholar 

  39. Heinzerling L, Klein R, Rarey M (2012) Fast force field-based optimization of protein-ligand complexes with graphics processor. J Comput Chem 33:2554–2565

    Article  CAS  Google Scholar 

  40. Fourches D, Tropsha A (2013) Using graph indices for the analysis and comparison of chemical datasets. Mol Inform 32:827–842

    Article  CAS  Google Scholar 

  41. Rognan D (2013) Towards the next generation of computational chemogenomics tools. Mol Inform 32:1029–1034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author sincerely thanks Profs. Alexandre Varnek (University of Strasbourg, France) and Alexander Tropsha (University of North Carolina at Chapel Hill, USA) for fruitful discussions, training, support and trust. This chapter has been proofread by Dr. Laura Widman (University of North Carolina at Chapel Hill, USA). Financial support from NSF ABI 1147145, EPA RD832720, SRC/Sematech, and UNC Junior Faculty Award is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Fourches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fourches, D. (2014). Cheminformatics: At the Crossroad of Eras. In: Gorb, L., Kuz'min, V., Muratov, E. (eds) Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9257-8_16

Download citation

Publish with us

Policies and ethics