Skip to main content

Hybrid QM/MM Methods: Treating Electronic Phenomena in Very Large Molecular Systems

  • Chapter
  • First Online:
Application of Computational Techniques in Pharmacy and Medicine

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 17))

  • 1605 Accesses

Abstract

Hybrid methods, combining the accuracy of Quantum Mechanics and the potency of Molecular Mechanics, the so-called QM/MM methods, arise from the desire of theoretician chemists to study electronic phenomena in large molecular systems. In this contribution, a focus, on the Physics and Chemistry on which theses methods are based on, is given. The advantages, flaws, and limitations of each type of methods are exposed. A special emphasis is put on the Local Self-Consistent Field method, developed in our group. The latest developments are detailed and illustrated by chosen examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koerner T, Brown RS, Gainsforth JL, Klobulowski M (1998) Electrophilic bromination of ethylene and ethylene-d4: a combined experimental and theoretical study. J Am Chem Soc 120:5628–5636

    Article  CAS  Google Scholar 

  2. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Nature 5637:1196–1202

    Google Scholar 

  3. Polli D, Altoé P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Rhodopsin isomerization probed in the visible spectral range. Nature 467:440–443

    Article  CAS  Google Scholar 

  4. Gozem S, Schapiro I, Ferré N, Olivucci M (2012) The molecular mechanism of thermal noise in rod photoreceptors. Science 337:1225–1228

    Article  CAS  Google Scholar 

  5. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer Nature Rev. Cancer 3:380–387

    CAS  Google Scholar 

  6. Metcalfe C, Thomas JA (2003) Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc Rev 32(2):15–224

    Google Scholar 

  7. Zeglis BM, Pierre VC, Barton JK (2007) Metallointercalators and metalloinsertors. Chem Commun 44:4565–4579

    Article  Google Scholar 

  8. Ortmans I, Elias B, Kelly JM, Moucheron C, Kirsch-De Mesmaeker A (2004) [RU(TAP)2(dppz)]2+: a DNA intercalating complex, which luminesces strongly in water and under goes photo-induced proton-coupled electron transfer with guanosine-5¢-monophosphate. Dalton Trans 668–676

    Google Scholar 

  9. Monari A, Rivail J-L, Assfeld X (2013) Theoretical modelling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc Chem Res 46:596–603

    Article  CAS  Google Scholar 

  10. Monard G, Merz KM Jr (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Rev 32:904–911

    Article  CAS  Google Scholar 

  11. Lin H, Truhlar DG (2007) QM/MM: what we have learned, where are we, and where do we go from here? Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  12. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Ang Chem Int 48:1198–1229

    Article  CAS  Google Scholar 

  13. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko IV (2012) Fragmentation methods: a route to accurate calculations on large molecules Chem Rev 112:632–613

    Article  CAS  Google Scholar 

  14. Dixon SL, Merz KM Jr (1996) Semiempirical molecular-orbital calculations with linear system size scaling. J Chem Phys 104:6643–6649

    Article  CAS  Google Scholar 

  15. Daniels AD, Millam JM, Scuseria GE (1997) Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems contianing thousands of atoms. J Chem Phys 107:425–431

    Article  CAS  Google Scholar 

  16. Yang W, Lee TS (1995) A density matrix divide-and-conquer approach for electronic structure calculations of large molecules. J Chem Phys 103:5674–5678

    Article  CAS  Google Scholar 

  17. Monard G, Bernal-Uruchurtu MI, van der Vaart A, Merz KM Jr, Ruiz-Lopèz MF (2005) Simulation of liquid water using semiempirical hamiltonina and the divide and conquer approach. J Phys Chem A 109:3425–3432

    Article  CAS  Google Scholar 

  18. Tarek M, Delemotte L (2013) Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations? Acc Chem Res. doi:10.1021/ar300290u

    Google Scholar 

  19. Warshel A, Levitt M (1976) Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozime. J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  20. Assfeld X, Rivail J-L (1996) Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem Phys Lett 263:100–106

    Article  CAS  Google Scholar 

  21. Jensen, F (2007) Introduction to quantum chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  22. Piela L (2007) Ideas of quantum chemistry. Elsevier, Amsterdam

    Google Scholar 

  23. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  24. van Gunsteren WF, Berendsen HJC (1987) Groningen Molecular Simulation (GROMOS) library manual. Biomos, Groningen

    Google Scholar 

  25. Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc 111:8551–8566

    Article  CAS  Google Scholar 

  26. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE. III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  27. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F. TK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe W, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  28. Dang LX, Chang T-M (1997) Molecular dynamics study of water clusters, liquid and liquid–vapor interface of water with many-body potentials. J Chem Phys 106:8149–8159

    Article  CAS  Google Scholar 

  29. Dupuis M, Aida M, Kawashima Y, Hirao K (2002) A polarizable mixed hamiltonian model of electronic structure for micro-solvated excited states. I energy and gradients formulation and application to formaldehyde (1A2) J Chem Phys 117:1242–1255

    Article  CAS  Google Scholar 

  30. Gresh N, Andrés Cisneros G, Darden TA, Piquemal J-P (2007) Anisotropic, polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand–macromolecule-complexes. A bottom-up strategy. J Chem Theory Comput 3:1960–1986

    Article  CAS  Google Scholar 

  31. Field MJ, Bash PA, Kearplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamic simulations J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  32. Kaminski GA, Jorgensen WL (1998) A quantum mechanical and molecular mechanical method based on cm1a charges: applications to solvent effects on organic equilibria and reactions. J Phys Chem B 102:1787–1796

    Article  CAS  Google Scholar 

  33. Ferré N, Olivucci M (2003) The amide bond: pitfalls and drawback of the link atom scheme. J Mol Struct (Theochem) 632:71–84

    Article  Google Scholar 

  34. Antes I, Thiel W (1999) Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J Phys Chem A 103:9290–9295

    Article  CAS  Google Scholar 

  35. Ranganathan S, Gready JE (1997) Hybrid quantum and molecular mechanical (QM/MM) studies on the pyruvate to l-lactate interconversion in l-lactate dehydrogenase. J Phys Chem B 101:5614–5618

    Article  CAS  Google Scholar 

  36. Swart M (2003) AddRemove: a new link model for use in QM/MM studies. Int J Quantum Chem 91:177–183

    Article  CAS  Google Scholar 

  37. Das D, Eurenius KP, Billings EM, Sherwood P, Chatfield DC, Hodoscek M, Brook BR (2002) Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method. J Chem Phys 117:10534–10547

    Article  CAS  Google Scholar 

  38. Di Labio GA, Hurley MM, Christiansen PA (2002) Simple one-electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules. J Chem Phys 116:9578–9584

    Article  CAS  Google Scholar 

  39. Zhang Y, Lee T-S, Yang W (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110:46–54

    Article  CAS  Google Scholar 

  40. Xiao C, Zhang Y (2007) Design-atom approach for quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons. J Chem Phys 127:124102

    Article  Google Scholar 

  41. Ferenczy GG, Rivail J-L, Surjan PR, Naray-Szabo G (1992) NDDO fragment self-consistent-field approximation for large electronic systems. J Comput Chem 13:830–837

    Article  CAS  Google Scholar 

  42. Théry V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994) Quantum mechanical computations on very large molecular systems: the local self-consistent field method. J Comput Chem 15:269–282

    Article  Google Scholar 

  43. Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  44. Gao G, Amara P, Alhambra C, Field MJ (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102:4714–4721

    Article  CAS  Google Scholar 

  45. Pu J, Gao J, Truhlar DG (2004) Generalized hybrid orbital (GHO) method for combining ab initio Hartree–Fock wave functions with molecular mechanics. J Phys Chem A 108:632–650

    Article  CAS  Google Scholar 

  46. Pu J, Gao J, Truhlar DG (2004) Combining self-consistent-charge density-functional tight-binding (SCC-DFTB) with molecular mechanics by the generalized hybrid orbital (GHO) method. J Phys Chem A 108:5454–5463

    Article  CAS  Google Scholar 

  47. Pu J, Truhlar DG (2005) Redristributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations J Phys Chem A 109:3991–4004

    Article  Google Scholar 

  48. Maseras F, Morokuma K (1995) IMOMM, a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structure and transition states. J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  49. Celebi N, Ángyán JG, Dehez F, Millot C, Chipot C (2000) Distributed polarizabilities derived from induction energies: a finite perturbation approach. J Chem Phys 112:2709–2717

    Article  CAS  Google Scholar 

  50. Dehez F, Soetens JC, Chipot C, Ángyán JG, Millot C (2000) Determination of distributed polarizabilities from a statistical analysis of induction energies. J Phys Chem A 104:1293–1303

    Article  CAS  Google Scholar 

  51. Martin M, Aguilar M, Chalmet S, Ruiz-Lopez MF (2001) An iterative procedure to determinate Lennard–Jone parameters for their use in quantum mechanics/molecular mechanics liquid state simulations. 284:607–614

    Google Scholar 

  52. Dehez F, Chipot C, Millot C, Ángyán JG (2001) Fast and accurate determination of induction energies: reduction of topologically distributed polarizability models. Chem Phys Lett 338:180–188

    Article  CAS  Google Scholar 

  53. Thompson MA (1996) QM/MMpol: a consistent model for solute/solvent polarization. Application to the aqueous solvation and spectroscopy of formaldehyde, acetaldehyde and acetone. J Phys Chem 100:14492–14507

    Article  CAS  Google Scholar 

  54. Jacquemin D, Perpète EA, Laurent AD, Assfeld X, Adamo C (2009) Spectral properties of self-assembled squaraine–tetralactam: a theoretical assessment. Phys Chem Chem Phys 11:1258–1262

    Article  CAS  Google Scholar 

  55. Laurent AD, Assfeld X (2010) Effect of the enhanced cyan fluorescent proteinic framework on the UV/visible absorption spectra of some chromophores. Interdisc Sci Comput Life Sci 2:38–47

    Article  Google Scholar 

  56. Monari A, Very T, Rivail J-L, Assfeld X (2012) A QM/MM study on the spinach plastocyanin: redox properties and absorption spectra. Comp Theoret Chem 990:119–125

    Article  CAS  Google Scholar 

  57. Monari A, Very T, Rivail J-L, Assfeld X (2012) Effects of mutations on the absorption spectrum of copper proteins: a QM/MM study Theor Chem Acc 131:1221

    Article  Google Scholar 

  58. Very T, Despax S, Hébraud P, Monari A, Assfeld X (2012) Spectral properties of polypyridyl ruthenium complex intercalated in DNA: theoretical insights on the surrounding effects for [Ru(dppz)(bpy)2]2+.Phys Chem Chem Phys 14:12496–12504

    Article  CAS  Google Scholar 

  59. Chantzis A, Very T, Monari A, Assfeld X (2012) Improved treatment of surrounding effects: UV/vis absorption properties of a solvated Ru(II) complex. J Chem Theory Comp 8:1536

    Article  CAS  Google Scholar 

  60. Etienne T, Very T, Perpète EA, Monari A, Assfeld X (2013) A QM/MM study of the absorption spectrum of harmane in water solution and interacting with DNA: the crucial role of dynamic effects J Phys Chem B 117:4973–4980

    Article  CAS  Google Scholar 

  61. Moreau Y, Loss P-F, Assfeld X (2004) Solvent effects on the asymmetric Diels–Alder reaction between cyclopentadiene and (–)-menthyl acrylate revisited with the three-layer hybrid local self-consistent field/molecular mechanics/self-consistent reaction field method. Theor Chem Acc 112: 228–239

    Article  CAS  Google Scholar 

  62. Ferré N, Assfeld X (2002) Application of the local self-consistent-field method to core-ionized and core-excited molecules, polymers, and proteins: true orthogonality between ground and excited states. J Chem Phys 117:4119–4125

    Article  Google Scholar 

  63. Loos PF, Assfeld X (2007) Core-ionized and core-excited states of macromolecules. Int J Quantum Chem 107:2243–2252

    Article  CAS  Google Scholar 

  64. Ferré N, Assfeld X, Rivail J-L (2002) Specific force field determination for the hybrid ab initio QM/MM LSCF method. J Comput Chem 23:610–624

    Article  Google Scholar 

  65. Fornili A, Loos P-F, Sironi M, Assfeld X (2006) Frozen core orbitals as an alternative to specific frontier bond potential in hybrid quantum mechanics/molecular mechanics methods. Chem Phys Lett 427:236–240

    Article  CAS  Google Scholar 

  66. Loos P-F, Fornili A, Sironi M, Assfeld X (2007) Removing extra frontier parameters in QM/MM methods: a tentative with the local self-consistent field approach. Comput Lett 4:473–486

    Article  Google Scholar 

  67. Loos P-F, Assfeld X (2007) On the frontier bond location in the QM/MM description of peptides and proteins. AIP Conf Proc 963:308–315

    Article  CAS  Google Scholar 

  68. Ferré N, Assfeld X (2003) A new three-layer hybrid method (LSCF/MM/Madelung) devoted to the study of chemical reactivity in zeolites. Preliminary results. J Mol Struct (Theochem) 632:83–90

    Article  Google Scholar 

  69. Loos PF, Assfeld X (2007) Self-consistent strictly localized orbitals. J Chem Theory Comput 3:1047–1053

    Article  CAS  Google Scholar 

  70. Boys SF (1960) Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev Mod Phys 32:296–299

    Article  CAS  Google Scholar 

  71. Monard G, Loos M, Théry V, Baka K, Rivail JL (1996) Hybrid classical quantum force field for modeling very large molecules. Int J Quantum Chem 58:153–159

    Article  CAS  Google Scholar 

  72. Foster JM, Boys SF (1960) Canonical configurational interaction procedure. Rev Mod Phys 32:300–302

    Article  CAS  Google Scholar 

  73. Magnasco V, Perico A (1967) Uniform localization of atomic and molecular orbitals. I. J Chem Phys 47:971–981

    Article  CAS  Google Scholar 

  74. Weinstein H, Pauncz R (1968) Molecular orbital set determined by a localization procedure. Symp Faraday Soc 2:23–31

    Article  Google Scholar 

  75. Pipek J, Mezey PG (1989) A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J Chem Phys 90:4916–4926

    Article  CAS  Google Scholar 

  76. Fornili A, Moreau Y, Sironi M, Assfeld X (2006) On the suitability of strictly localized orbitals for hybrid QM/MM calculations. J Comput Chem 27:515–523

    Article  CAS  Google Scholar 

  77. Sironi M, Famulari A (2000) An orthogonal approach to determine extremely localised molecular orbitals. Theor Chem Acc 103:417–422

    Article  CAS  Google Scholar 

  78. Antonczak S, Monard G, Ruiz-López MF, Rivail J-L (1998) Modeling of peptide hydrolysis by thermolysin. A semiempirical and QM/MM study. J Am Chem Soc. 120:8825–8833

    Article  CAS  Google Scholar 

  79. Fornili A, Sironi M, Raimondi M (2003) Determination of extremely localized molecular orbitals and their application to quantum mechanics/molecular mechanics methods and to the study of intramolecular hydrogen bonding. J Mol Struct (Theochem) 632:157–172

    Article  CAS  Google Scholar 

  80. Genoni A, Ghitti M, Pieraccini S, Sironi M (2005) A novel extremely localized molecular orbitals based technique for the one-electron density matrix computation. Chem Phys Lett 415:256–260

    Article  CAS  Google Scholar 

  81. Ruiz-Pernia J, Luk L, Garcia-Meseguer R, Marti S, Loveridge J, Tuñón I, Moliner V, Allemann R (2013) Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase. J Am Chem Soc. doi:10.1021/ja410519h

    Google Scholar 

  82. Luk L, Ruiz-Pernia J, Dawson W, Roca M, Loveridge J, Glowacki D, Harvey J, Mulholland A, Tuñón I, Moliner V, Allemann R (2013) Unravelling the role of protein dynamics in dihydrofolate reductase catalysis. Proc Nat Acad Sci U S A 110:16344–16349

    Article  CAS  Google Scholar 

  83. Jacquemin D, Mennucci B, Adamo C (2011) Excited-state calculations with TD-DFT: from benchmarcks to simulations in complex environments. Phys Chem Chem Phys 13:16987–16998

    Article  CAS  Google Scholar 

  84. Gonzaléz L, Escudero D, Serrano-Andrés (2012) Progress and challenges in the calculation of electronic excited states. Chem Phys Chem 13:28–51

    Google Scholar 

  85. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quant Chem. doi:10.1002/qua.24438

    Google Scholar 

  86. Clark KM, Yu Y, Marshall NM, Sieracki NA, Nilges MJ, Blackburn NJ., van de Donk WA., Lu Y (2010) Transforming a blue copper into a red copper protein: engineering cystein and homocystein into the axial position of azurin using site-directed mutagenesis and expressed protein ligation. J Am Chem Soc 132:10093–10101

    Article  CAS  Google Scholar 

  87. Abtouche S, Very T, Monari A, Brahimi M, Assfeld X (2013) Insights on the interactions of polychlorobiphenyl with nucleic acid base. J Mol Model 19:581–588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Monari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Monari, A., Assfeld, X. (2014). Hybrid QM/MM Methods: Treating Electronic Phenomena in Very Large Molecular Systems. In: Gorb, L., Kuz'min, V., Muratov, E. (eds) Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9257-8_1

Download citation

Publish with us

Policies and ethics