Skip to main content

Advancement of Polarizable Force Field and Its Use for Molecular Modeling and Design

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

The most important requirement of biomolecular modeling is to deal with electrostatic energies. The electrostatic polarizability is an important part of electrostatic interaction for simulation systems. However, AMBER, CHARMM, OPLS, GROMOS, MMFF force fields etc. used in the past mostly apply fixed atomic center point charge to describe electrostatic energies, and are not sufficient for considering the influence of the electrostatic polarization. The emergence of polarizable force fields has solved this problem. In recent years, quickly developed polarizable force fields have involved a lot of fields. The chapter relating to polarizable force fields spread over several aspects. Firstly, we reviewed the history of the classical force fields and compared with polarizable force fields to elucidate the advancements of polarizable force fields. Secondly, it is introduced that the application of polarizable force fields to small molecules and biological macromolecules simulation, including molecular design. Finally, a brief development trend and perspective is given on rapidly growing polarizable force fields.

Peijun Xu, Huiying Chu and Jinguang Wang have been contributed equally to this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrews DH (1930) The relation between the Raman spectra and the structure of organic molecules. Phys Rev 36:544–554

    Article  CAS  Google Scholar 

  2. Lifson A, Warshel S (1968) Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49:5116–5229

    Article  CAS  Google Scholar 

  3. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing VI and V2 torsional terms. J Am Chem Soc 99(25):8127–8134

    Article  CAS  Google Scholar 

  4. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G et al (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  5. MacKerell AD Jr, Bashfor D, Bellott M, Dunbrack RL, Evanseck JD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  6. Allinger NL, Yuh YH, Lii JH (1989) Molecular machanics. The MM3 force field for hydrocarbon. J Am Chem Soc 111(23):8551–8566

    Article  CAS  Google Scholar 

  7. Allinger NL, Chen KH, Lii JH, Durkin KA (2003) Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds. J Comput Chem 24:1447–1472

    Article  CAS  PubMed  Google Scholar 

  8. Allured VS, Kelly CM, Landis CR (1991) SHAPES empirical force field: new treatment of angular potentials and its application to square-planar transition-metal complexes. J Am Chem Soc 113(1):1–12

    Article  CAS  Google Scholar 

  9. Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  10. Jorgensen WL, Maxwell DS, Julian TR (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  11. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  12. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skid WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  CAS  Google Scholar 

  13. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  14. Toxvaerd S (1990) Molecular dynamics calculation of the equation of state of alkanes. J Chem Phys 93:4290–4295

    Article  CAS  Google Scholar 

  15. Gu RX, Liu LA, Wei DQ (2011) Free energy calculations on the two drug binding sites in the M2 proton channel. J Am Chem Soc 133(28):10817–10825

    Article  CAS  PubMed  Google Scholar 

  16. Lian P, Wei DQ, Wang JF, Chou KC (2011) An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes. PLoS ONE 6:e18587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Arias HR, Gu RX, Feuerbach D, Guo BB, Ye Y, Wei DQ (2011) Novel positive allosteric modulators of the human α7 nicotinic acetylcholine receptor. Biochemistry 50:5263–5278

    Article  CAS  PubMed  Google Scholar 

  18. Zhang T, Liu L, Lewis D, Wei DQ (2011) Long-range effects of a surface mutation on the enzymatic activity of cytochrome P450 1A2. J Chem Info Model 51:1336–1346

    Article  CAS  Google Scholar 

  19. Arias HR, Gu RX, Feuerbach D, Wei DQ (2010) Different interaction between the agonist JN403 and the competitive antagonist methyllycaconitine with the human alpha7 nicotinic acetylcholine receptor. Biochemistry 49:4169–4180

    Article  CAS  PubMed  Google Scholar 

  20. Xu BS, Shen HJ, Zhu X, Li GH (2011) Fast and accurate computation scheme for vibrational entropy of proteins. J Comp Chem 32(15):3188–3193

    Article  CAS  Google Scholar 

  21. Wu J, Xia Z, Shen HJ, Li GH, Ren PY (2011) Gay-Berne and electrostatic multipole based coarse grained model and application with polyalanine in implicit solvent. J Chem Phys 135:155104

    Article  PubMed Central  PubMed  Google Scholar 

  22. Xu BS, Dustin E, Wang YM, Liang HJ, Li GH (2013) A structural-based strategy for recognition of transcription factor binding sites. PLOS ONE, available online at http://dx.plos.org/10.1371/journal.pone.0052460

  23. Wang JA, Zhu WL, Li GH, Hansmann UH (2011) Velocity-scaling optimized replica exchange molecular dynamics of proteins in a hybrid explicit/implicit solvent. J Chem Phys 135(8):084115

    Article  PubMed  Google Scholar 

  24. Zhang YX, Shen HJ, Zhang MB, Li GH (2013) Exploring the proton conductance and drug resistance of BM2 channel through molecular dynamics simulations and free energy calculations at different pH conditions. J Phys Chem B 117(4):982–988

    Article  CAS  PubMed  Google Scholar 

  25. Shen HJ, Sun H, Li GH (2012) What is the role of motif D in the nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus? PLOS Comp Biol 8(12):e1002851

    Article  CAS  Google Scholar 

  26. Gao J (1997) Toward a molecular orbital derived empirical potential for liquid simulations. J Phys Chem B 101:657–663

    Article  CAS  Google Scholar 

  27. Xie W, Gao J (2007) Design of a next generation force field: the X-POL potential. J Chem Theory Comput 3:1890–1900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xie W, Orozco M, Truhlar DG, Gao J (2009) X-Pol potential: an electronic structure-based force field for molecular dynamics simulation of a solvated protein in water. J Chem Theory Comput 5:459–467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  30. Warshel A, Levitt M (1976) Theoretical studies of enzymatic reactions: dielectric electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  CAS  PubMed  Google Scholar 

  31. Gao J, Habibollahzadeh D, Shao L (1995) A polarizable intermolecular potential functions for simulations of liquid alcohols. J Phys Chem 99:16460–16467

    Article  CAS  Google Scholar 

  32. Xie W, Pu J, MacKerell AD Jr, Gao J (2007) Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J Chem Theory Comput 3:1878–1889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–16

    Article  CAS  PubMed  Google Scholar 

  34. Patel S, MacKerell AD Jr, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25:1504–1514

    Article  CAS  PubMed  Google Scholar 

  35. Anisimov VM, Lamoureux G, Vorobyov IV, Huang N, Roux B, MacKerell AD et al (2005) Determination of electrostatic parameters for a polarizable force field based on the classical drude oscillator. J Chem Theory Comput 1:153–168

    Article  Google Scholar 

  36. Yu H, Whitfield TW, Harder E, Lamoureux G, Vorobyov I, Anisimov VM et al (2010) Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field. J Chem Theory Comput 6:774–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gresh N, Cisneros GA, Darden TA, Piquemal JP (2007) Anisotropic, polarizable molecular mechanics studies of inter-and intramolecular interactions, and ligand-macromolecule complexes. A bottom-up strategy. J Chem Theory Comput 3:1960–1986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ponder JW, Wu CJ, Ren PY, Pande VS, Chodera JD, Schnieders MJ et al (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114:2549–2564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Engkvist O, Astrand PO, Karlstrom G (2000) Accurate intermolecular potentials obtained from molecular wave functions: bridging the gap between quantum chemistry and molecular simulations. Chem Rev 100:4087–4108

    Article  CAS  PubMed  Google Scholar 

  40. Yang ZZ, Wang CS (1997) Atom-bond electronegativity equalization method, I. calculation of the charge distribution in large molecules. J Phys Chem A 101:6315–6321

    Article  CAS  Google Scholar 

  41. Van Belle D, Froeyen M, Lippens G, Wodak SJ (1992) Molecular dynamics simulation of polarizable water by extended Lagrangian method. Mol Phys 77:239–255

    Article  Google Scholar 

  42. Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101:6141–6156

    Article  CAS  Google Scholar 

  43. Martin MG, Chen B, Siepmann JI (1998) A novel Monte Carlo algorithm for polarizable force fields: application to a fluctuating charge model for water. J Chem Phys 108:3383–3385

    Article  CAS  Google Scholar 

  44. Hem S, Bassler H (1994) Fluorescence spectroscopy of oligo. J Phys Chem 98(30):7355–7358

    Article  Google Scholar 

  45. Shah S, Concolino T, Rheingold AL, Protasiewicz JD (2000) Sterically encumbered systems for two low-coordinate phosphorus centers. Inorg Chem 39(17):3860–3867

    Article  CAS  PubMed  Google Scholar 

  46. Spiliopoulos IK, Mikroyannidis JA (2002) Blue-light-emitting poly(phenylenevinylene)s with alkoxyphenyl substituents: synthesis and optical properties. Macromolecules 35:2149–2156

    Article  CAS  Google Scholar 

  47. Lee SH, Jang BB, Tsutsui T (2002) Sterically hindered fluorenyl-substituted poly(p-phenylenevinylenes) for light-emitting diodes. Macromolecules 35:1356–1364

    Article  CAS  Google Scholar 

  48. Roncali J (2000) Oligothienylenevinylenes as a new class of multinanometer linear л-conjugated systems for micro- and nanoelectronics. Acc Chem Res 33:147–156

    Article  CAS  PubMed  Google Scholar 

  49. Caldwell J, Dang LX, Kollman PA (1990) Implementation of nonadditive intermolecular potentials by use of molecular dynamics: Development of a water–water potential and water–ion cluster interactions. J Am Chem Soc 112:9144–9147

    Article  CAS  Google Scholar 

  50. Stuart SJ, Berne BJ (1996) Effects of polarizability on the hydration of the chloride ion. J Phys Chem 100:11934–11943

    Article  CAS  Google Scholar 

  51. Grossfield A, Ren P, Ponder JW (2003) Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125:15671–15682

    Article  CAS  PubMed  Google Scholar 

  52. Shelley JC, Sprik M, Klein ML (1993) Molecular dynamics simulation of an aqueous sodium octanoate micelle using polarizable surfactant molecules. Langmuir 9(4):916–926

    Article  CAS  Google Scholar 

  53. Rick SW, Berne BJ (1996) Dynamical fluctuating charge force fields: the aqueous solvation of amides. J Am Chem Soc 118:672–679

    Article  CAS  Google Scholar 

  54. Gao J, Dariush H, Shao L (1995) A polarizable intermolecular potential function for simulation of liquid alcohols. J Phys Chem 99(44):16460–16467

    Article  CAS  Google Scholar 

  55. Caldwell JW, Kollman PA (1995) Structure and properties of neat liquids using nonadditive molecular dynamics: Water, methanol, and N-methylacetamide. J Phys Chem 99(16):6208–6219

    Article  CAS  Google Scholar 

  56. Dang LX (1999) Computer simulation studies of ion transport across a liquid/liquid interface. J Phys Chem B 103(39):8195–8200

    Article  CAS  Google Scholar 

  57. Hermida-Ramon JM, Rios MA (1998) A new intermolecular polarizable potential for a formaldehyde dimer. Application to liquid simulations. J Phys Chem A 102:10818–10827

    Article  CAS  Google Scholar 

  58. Ding Y, Bernardo DN, Krogh-Jespersen K, Levy RM (1995) Solvation free energies of small amides and amines from molecular dynamics/free energy perturbation simulations using pairwise additive and many-body polarizable potentials. J Phys Chem 99:11575–11583

    Article  CAS  Google Scholar 

  59. Meng EC, Caldwell JW, Kollman PA (1996) Investigating the anomalous solvation free energies of amines with a polarizable potential. J Phys Chem 100:2367–2371

    Article  CAS  Google Scholar 

  60. Mannfors B, Palmo K, Krimm S (2000) A new electrostatic model for molecular mechanics force fields. J Mol Struct 556:1–22

    Article  CAS  Google Scholar 

  61. Kaminski GA, Stern HA, Berne BJ, Friesner RA, Cao YX, Murphy RB et al (2002) Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests. J Comput Chem 23:1515–1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Jiao D, Golubkov PA, Darden TA, Ren P (2008) Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci USA 105:6290–6295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Jiao D, Zhang J, Duke RE, Li G, Schnieders MJ, Ren P (2009) Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. J Comput Chem 30:1701–1711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shi Y, Jiao D, Schnieders MJ, Ren P (2009) Trypsin-ligand binding free energy calculation with AMOEBA. In: IEEE Engineering in Medicine and Biology Society, EMBC proceedings, pp 2328–2331

    Google Scholar 

  65. Scherlis DA, Marzari N (2004) π-Stacking in charged thiophene oligomers. J Phys Chem B 108(46):17791–17795

    Article  CAS  Google Scholar 

  66. Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  67. Leach AR (2001) Molecular modelling: principles and applications. Pearson Education Limited, England

    Google Scholar 

  68. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358

    Article  CAS  Google Scholar 

  69. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) Oligoacenes: theoretical prediction of open-shell singlet diradical ground states. J Am Chem Soc 126(24):7416–7417

    Article  CAS  PubMed  Google Scholar 

  70. Koshida N, Matsumoto N (2003) Fabrication and quantum properties of nanostructured silicon. Mater Sci Eng R 40:169–205

    Article  Google Scholar 

  71. Miller RD, Michl J (1989) Polysilane high polymers. Chem Rev 89:1359–1410

    Article  CAS  Google Scholar 

  72. Zeng XB, Liao XB, Wang B, Dai ST, Xu YY, Xiang XB et al (2004) Optical properties of boron-doped Si nanowires. J Cryst Growth 265:94–98

    Article  CAS  Google Scholar 

  73. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  CAS  PubMed  Google Scholar 

  74. Holmes JD, Johnston KP, Doty RC, Korgel BR (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287:1471–1473

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xu, P. et al. (2015). Advancement of Polarizable Force Field and Its Use for Molecular Modeling and Design. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_3

Download citation

Publish with us

Policies and ethics