Skip to main content

An Application of QM/MM Simulation: The Second Protonation of Cytochrome P450

  • Chapter
  • First Online:
Advance in Structural Bioinformatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

The multiscale model strategy, hybrid quantum mechanics and molecular mechanics (QM/MM), has become more and more prevalent in the theoretical study of enzymatic reactions. It combines both the efficiency of the Newtonian molecular calculations and the accuracy of the quantum mechanical methods. Simulation using QM/MM multiscale model may be one of the most promising approaches that could further narrow the gap between the theoretical models and the real problems. It is capable of dealing with not only the conformational changes of biomacromolecules, but also the catalytic reactions. Herein, we reviewed some of our recent work to demonstrate the application of the QM/MM simulations in exploring the enzymatic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249

    Article  CAS  PubMed  Google Scholar 

  2. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11(6):700–733

    Article  CAS  Google Scholar 

  3. Théry V et al (1994) Quantum mechanical computations on very large molecular systems: the local self-consistent field method. J Comput Chem 15(3):269–282

    Article  Google Scholar 

  4. Murphy RB, Philipp DM, Friesner RA (2000) A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J Comput Chem 21(16):1442–1457

    Article  CAS  Google Scholar 

  5. Gao J et al (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102(24):4714–4721

    Article  CAS  Google Scholar 

  6. Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry. Springer, Heidelberg

    Google Scholar 

  7. Dawson JH, Sono M (1987) Cytochrome P-450 and Chloroperoxidase—thiolate-ligated heme enzymes—spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation. Chem Rev 87(5):1255–1276

    Article  CAS  Google Scholar 

  8. Sono M et al (1996) Heme-containing oxygenases. Chem Rev 96(7):2841–2887

    Article  CAS  PubMed  Google Scholar 

  9. Hawkes DB et al (2002) Cytochrome P450cin (CYP176A), isolation, expression, and characterization. J Biol Chem 277(31):27725–27732

    Article  CAS  PubMed  Google Scholar 

  10. Denisov IG et al (2005) Structure and chemistry of cytochrome P450. Chem Rev 105(6):2253–2277

    Article  CAS  PubMed  Google Scholar 

  11. de Visser SP, Valentine JS, Nam W (2010) A biomimetic ferric hydroperoxo porphyrin intermediate. Angew Chem Int Ed 49(12):2099–2101

    Article  Google Scholar 

  12. Coon MJ (2005) Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 45:1–25

    Article  CAS  PubMed  Google Scholar 

  13. Guallar V, Friesner RA (2004) Cytochrome P450CAM enzymatic catalysis cycle: a quantum mechanics/molecular mechanics study. J Am Chem Soc 126(27):8501–8508

    Article  CAS  PubMed  Google Scholar 

  14. Gunsalus IC, Pederson TC, Sligar SG (1975) Oxygenase-catalyzed biological hydroxylations. Annu Rev Biochem 44:377–407

    Article  CAS  PubMed  Google Scholar 

  15. Schlichting I et al (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287(5458):1615–1622

    Article  CAS  PubMed  Google Scholar 

  16. Altarsha M et al (2009) How is the reactivity of cytochrome P450cam affected by Thr252X mutation? A QM/MM study for X = serine, valine, alanine glycine. J Am Chem Soc 131(13):4755–4763

    Article  CAS  PubMed  Google Scholar 

  17. Liu JG et al (2009) Spectroscopic characterization of a hydroperoxo-heme intermediate: conversion of a side-on peroxo to an end-on hydroperoxo complex. Angew Chem Int Ed 48(49):9262–9267

    Article  CAS  Google Scholar 

  18. Ogliaro F et al (2002) Searching for the second oxidant in the catalytic cycle of cytochrome P450: a theoretical investigation of the iron (III)-hydroperoxo species and its epoxidation pathways. J Am Chem Soc 124(11):2806–2817

    Article  CAS  PubMed  Google Scholar 

  19. Kumar D et al (2005) New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0. J Phys Chem B 109(42):19946–19951

    Article  CAS  PubMed  Google Scholar 

  20. Zheng JJ et al (2006) QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam. J Am Chem Soc 128(40):13204–13215

    Article  CAS  PubMed  Google Scholar 

  21. Harris DL, Loew GH (1998) Theoretical investigation of the proton assisted pathway to formation of cytochrome P450 compound I. J Am Chem Soc 120(35):8941–8948

    Article  CAS  Google Scholar 

  22. Hata M et al (2004) Theoretical study on compound i formation in monooxygenation mechanism by cytochrome P450. J Phys Chem B 108(30):11189–11195

    Article  CAS  Google Scholar 

  23. Shaik S et al (2005) Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 105(6):2279–2328

    Article  CAS  PubMed  Google Scholar 

  24. Sen K, Hackett JC (2009) Molecular Oxygen Activation and Proton Transfer Mechanisms in Lanosterol 14a-Demethylase Catalysis. J. Phys. Chem. B 113(23):8170–8182

    Article  CAS  PubMed  Google Scholar 

  25. Altarsha M et al (2010) Coupling and uncoupling mechanisms in the methoxythreonine mutant of cytochrome P450cam: a quantum mechanical/molecular mechanical study. J Biol Inorg Chem 15(3):361–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Taraphder S, Hummer G (2003) Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome P450cam. J Am Chem Soc 125(13):3931–3940

    Article  CAS  PubMed  Google Scholar 

  27. Vidakovic M et al (1998) Understanding the role of the essential Asp251 in cytochrome P450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. Biochemistry 37(26):9211–9219

    Article  CAS  PubMed  Google Scholar 

  28. Richmond TJ (1984) Solvent accessible surface area and excluded volume in proteins: analytical equations for overlapping spheres and implications for the hydrophobic effect. J Mol Biol 178(1):63–89

    Article  CAS  PubMed  Google Scholar 

  29. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  PubMed  Google Scholar 

  30. Shimada H et al (1990) Mechanism of oxygen activation by cytochrome P-450cam. In: International symposium on oxygenases and oxygen activation: yamada conference XXVII. Yamada Science Foundation, Osaka, Japan

    Google Scholar 

  31. Gerber NC, Sligar SG (1992) Catalytic mechanism of cytochrome P-450: evidence for a distal charge relay. J Am Chem Soc 114(22):8742–8743

    Article  CAS  Google Scholar 

  32. Hishik T et al (2000) X-ray crystal structure and catalytic properties of Thr252Ile mutant of cytochrome P450cam: roles of Thr252 and water in the active center. J Biochem 128(6):965–974

    Article  Google Scholar 

  33. Imai M et al (1989) Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci USA 86(20):7823–7827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kimata Y et al (1995) Role of Thr-252 in cytochrome P450(Cam)—a study with unnatural amino-acid mutagenesis. Biochem Biophys Res Commun 208(1):96–102

    Article  CAS  PubMed  Google Scholar 

  35. Agmon N (1995) The grotthuss mechanism. Chem Phys Lett 244(5–6):456–462

    Article  CAS  Google Scholar 

  36. Schoneboom JC et al (2002) The elusive oxidant species of cytochrome P450 enzymes: characterization by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J Am Chem Soc 124(27):8142–8151

    Article  PubMed  Google Scholar 

  37. Schoneboom JC, Thiel W (2004) The resting state of P450cam: a QM/MM study. J Phys Chem B 108(22):7468–7478

    Article  Google Scholar 

  38. Altun A, Thiel W (2005) Combined quantum mechanical/molecular mechanical study on the pentacoordinated ferric and ferrous cytochrome P450cam complexes. J Phys Chem B 109(3):1268–1280

    Article  CAS  PubMed  Google Scholar 

  39. Wang D et al (2008) Quantum and molecular mechanical study of the first proton transfer in the catalytic cycle of cytochrome P450cam and its mutant D251N. J Phys Chem B 112(16):5126–5138

    Article  CAS  PubMed  Google Scholar 

  40. Koster AM et al (2003) DeMon 2003 code. NRC, Canada

    Google Scholar 

  41. Oprea TI, Hummer G, García AE (1997) Identification of a functional water channel in cytochrome P450 enzymes. Proc Natl Acad Sci USA 94(6):2133–2138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  PubMed  Google Scholar 

  43. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  Google Scholar 

  44. Laasonen K et al (1991) Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys Rev B 43(8):6796–6799

    Article  CAS  Google Scholar 

  45. Laasonen K et al (1993) Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Phys Rev B 47(16):10142–10153

    Article  CAS  Google Scholar 

  46. Jorgensen WL, Tirado-Rives J (1988) The OPLS force field for proteins. energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  47. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  48. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  49. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317

    CAS  Google Scholar 

  50. van der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  51. Biswas PK, Gogonea V (2005) A regularized and renormalized electrostatic coupling hamiltonian for hybrid quantum-mechanical-molecular-mechanical calculations. J Chem Phys 123(16):164114–164122

    Article  CAS  PubMed  Google Scholar 

  52. Das D et al (2002) Optimization of quantum mechanical molecular mechanical partitioning schemes: gaussian delocalization of molecular mechanical charges and the double link atom method. J Chem Phys 117(23):10534–10547

    Article  CAS  Google Scholar 

  53. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    Article  Google Scholar 

  54. Berendsen HJC et al (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  55. Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  CAS  PubMed  Google Scholar 

  56. Lian P et al (2010) Tethered-hopping model for protein-DNA binding and unbinding based on Sox2-Oct1-Hoxb1 ternary complex simulations. Biophys J 98(7):1285–1293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lian P WD-Q, Wang J-F, Chou K-C (2011) An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes. PLoS One 6(4):e18587

    Google Scholar 

  58. Lian P et al (2013) Catalytic mechanism and origin of high activity of cellulase TmCel12A at high temperature: a quantum mechanical/molecular mechanical study. Cellulose 1–13

    Google Scholar 

  59. Lian P et al (2013) Car-parrinello molecular dynamics/molecular mechanics (CPMD/MM) simulation study of coupling and uncoupling mechanisms of cytochrome P450cam. J Phys Chem B 117(26):7849–7856

    Article  CAS  PubMed  Google Scholar 

  60. Kamachi T et al (2003) Does the hydroperoxo species of cytochrome P450 participate in olefin epoxidation with the main oxidant, compound I? Criticism from density functional theory calculations. Bull Chem Soc Jpn 76(4):721–732

    Article  CAS  Google Scholar 

  61. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1

    Google Scholar 

  62. Frisch MJ et al (2009) Gaussian 09, revision A.1. Gaussian Inc, Wallingford, CT

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lian, P., Wei, D. (2015). An Application of QM/MM Simulation: The Second Protonation of Cytochrome P450. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_18

Download citation

Publish with us

Policies and ethics