Skip to main content

Abstract

The emergence of microelectromechanical systems (MEMS) fabrication techniques is prevalent in modern electronics, personal communications systems and many other everyday devices that continually become smaller and more capable. Mass spectrometry (MS) (Fox J, Saini R, Tsui K, Verbeck G, Rev Sci Instrum 80(9):93302–93306, 2009), too has benefited from these fabrication techniques and as a result, there has been an increased focus on instrument miniaturization and field portability. Much of the effort in this area has been in the miniaturization of the mass analyzer where even micron-sized analyzers have been reported. However, the miniaturization of the mass analyzer is not the only barrier to system size reduction. Much of the support hardware (pumping systems, ionization sources, detectors, etc.) has not scaled proportionally, either in size or operational capability. Often the batteries are the largest/heaviest components in a miniature system and, despite improvements in battery technologies, power is still a major limitation for field portability. In addition to MS hardware, the methods for sample acquisition, processing and introduction must be reduced with respect to complexity, size and power requirements while still maintaining sufficient analytical efficiency for adequate detection specifications. Finally, the systems must be easy to use by non-expert operators. All of these analytical figures of merit interplay in such a way that significant tradeoffs must be made when designing a field-portable instrument for a particular application.

The three talks presented at the 2013 NATO Advanced Studies Institute in Sienna Italy and summarized in this chapter cover the progress and obstacles in miniaturization of MS components as well as the interdependencies of the instrumental figures of merit, analytical performance and field applications as they pertain to field-portable miniature MS. The talks included examples from the speakers’ past and current fieldable instrument development projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox J, Saini R, Tsui K, Verbeck G (2009) Microelectromechanical system assembled ion optics: an advance to miniaturization and assembly of electron and ion optics. Rev Sci Instrum 80(9):93302–93306

    Article  CAS  Google Scholar 

  2. Lopez-Avila V, Hill HH (1997) Field analytical chemistry. Anal Chem 69(12):289R–305R

    Article  CAS  Google Scholar 

  3. Rushneck DR, Diaz AV, Howarth DW, Rampacek J, Olson KW, Dencker WD, Smith P, McDavid L, Tomassian A, Harris M, Bulota K, Biemann K, LaFleur AL, Biller JE, Owen T (1978) Viking gas chromatograph-mass spectrometer. Rev Sci Instrum 49:817–834

    Article  CAS  Google Scholar 

  4. Jones JJ, Wilkins CL (2004) Bacterial pyrolysis products analyzed using a portable high resolution 1 Tesla Fourier transform mass spectrometer. In: Proceedings of the 52nd ASMS conference on mass spectrometry and allied topics, Nashville, 23–27 May 2004

    Google Scholar 

  5. Enfield W, Bender SF (1997) Keenen MR, Thronberg SM, Hightower MM, Environmental technology verification report. Field portable gas chromatograph/mass spectrometer. Viking Instruments Corporation SpectraTrak™ 672; Sandia National Laboratories, Albuquerque, December 1997, 103 pp

    Google Scholar 

  6. Smith PA (2012) Person-portable gas chromatography: rapid temperature program operation through resistive heating of columns with inherently low thermal mass properties. J Chromatogr A 1261:37–45

    Article  CAS  Google Scholar 

  7. http://www.gulflink.osd.mil/foxnbc/

  8. Wise MB, Thompson CV, Buchanan MV, Merriweather R, Guerin MR (1993) Direct sampling ion trap mass spectrometry. Spectroscopy 8:14–22

    CAS  Google Scholar 

  9. Stalport F, Glavin DP, Eigenbrode JL, Bish D, Blake D, Coll P, Szopa C, Buch A, McAdam A, Dworkin JP, Mahaffy PR (2012) The influence of mineralogy on recovering organic acids from Mars analogue materials using the “one-pot” derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite. Planet Space Sci 67(1):1–13

    Article  CAS  Google Scholar 

  10. Diaz JA, Pieri D, Arkin R, Gore E, Griffin TP, Fladeland M, Bland G, Soto C, Madrigal Y, Castillo D, Rojas E, Achi S (2010) Utilization of in situ airborne MS-based instrumentation for the study of gaseous emissions at active volcanoes. Int J Mass Spectrom 295(3):105–112

    Article  CAS  Google Scholar 

  11. Short RT, Fries DP, Toler SK, Lembke CE, Byrne RH (1999) Development of an underwater mass-spectrometry system for in situ chemical analysis. Meas Sci Technol 10:1195–1201

    Article  CAS  Google Scholar 

  12. http://www.hems-workshop.org

  13. Austin DE, Lammert SA, Mass analyzer miniaturization; Encyclopedia of mass spectrometry, vol 7. Elsevier, Amsterdam (in Press)

    Google Scholar 

  14. Badman ER, Cooks RG (2000) Miniature mass analyzers. J Mass Spectrom 35:659–671

    Article  CAS  Google Scholar 

  15. Dawson PH (1976) Quadrupole mass spectrometry and its applications. Elsevier, Amsterdam. Republished by American Institute of Physics, Woodbury (1995)

    Google Scholar 

  16. March RE, Hughes RJ (1989) Quadrupole storage mass spectrometry. Wiley Interscience, New York

    Google Scholar 

  17. Johnson JV, Yost RA, Kelley PE, Bradford DC (1990) Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Anal Chem 62(20):2162–2172

    Article  CAS  Google Scholar 

  18. Tian Y, Higgs J, Li A, Barney B, Austin DE (2014) How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J Mass Spectrom 49:233–240

    Article  CAS  Google Scholar 

  19. Ouyang Z, Gao L, Fico M, Chappell WJ, Noll RJ, Cooks RG (2007) Quadrupole ion traps and trap arrays: geometry, material, scale, performance. Eur J Mass Spectrom 13(1):13–18

    Article  CAS  Google Scholar 

  20. Lammert SA, Plass WR, Thompson CV, Wise MB (2001) Design, optimization and initial performance of a toroidal RF ion trap mass spectrometer. Int J Mass Spectrom 212:25–40

    Article  CAS  Google Scholar 

  21. Lammert SA, Rockwood AA, Wang M, Lee ML, Lee ED, Tolley SE, Oliphant JR, Jones JL, White RW (2006) Miniature toroidal radio frequency ion trap mass analyzer. J Am Soc Mass Spectrom 17:916–922

    Article  CAS  Google Scholar 

  22. Ouyang Z, Wu G, Song Y, Li H, Plass WR, Cooks RG (2004) Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal Chem 77:4595–4605

    Article  Google Scholar 

  23. Blain MG, Riter LS, Cruz D, Austin DE, Wu G, Plass WR, Cooks RG (2004) Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps. Int J Mass Spectrom 236:91–104

    Article  CAS  Google Scholar 

  24. Zhang Z, Peng P, Hansen BJ, Miller IW, Wang M, Lee ML, Hawkins AR, Austin DE (2009) Paul trap mass analyzer consisting of opposing microfabricated electrode plates. Anal Chem 81(13):5241–5248

    Article  CAS  Google Scholar 

  25. Wang M, Quist HE, Hansen BJ, Peng Y, Zhang Z, Hawkins AR, Rockwood AL, Austin DE, Lee ML (2011) Performance of a halo ion trap mass analyzer with exit slits for axial ejection. J Am Soc Mass Spectrom 22:369–378

    Article  CAS  Google Scholar 

  26. Hansen BJ, Niemi RJ, Hawkins AR, Lammert SA, Austin DE (2013) A lithographically patterned discrete planar electrode linear ion trap mass spectrometer. J Microelectromech Syst 22:875–883

    Article  Google Scholar 

  27. Hart KJ, Wise MB, Griest WH, Lammert SA (2000) Design, development and performance of a fieldable chemical and biological agent detector. Field Anal Chem Tech 4:93–110

    Article  CAS  Google Scholar 

  28. Griest WH, Wise MB, Hart MB, Lammert SA, Thompson CV, Vass AA (2001) Biological agent detection and identification by the Block II chemical biological mass spectrometer. Field Anal Chem Technol 5(4):177–184

    Article  CAS  Google Scholar 

  29. Gao L, Song Q, Patterson GE, Cooks RG, Ouyang Z (2006) Handheld rectilinear ion trap mass spectrometer. Anal Chem 78:5994–6002

    Article  CAS  Google Scholar 

  30. Yang M, Kim T-Y, Hwang H-C, Yi S-K, Kim D-H (2008) Development of a palm portable mass spectrometer. J Am Soc Mass Spectrom 19(10):1442–1448

    Article  CAS  Google Scholar 

  31. http://www.1stdetect.com

  32. http://www.908devices.com

  33. http://gs.flir.com/detection/chemical/mass-spec

  34. http://www.bruker.com/products/cbrne-detection/ms/e2m/overview.html

  35. Gross J (2014) Direct analysis in real time-a critical review on DART-MS. Anal Bioanal Chem 406(1):63–80

    Article  CAS  Google Scholar 

  36. Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG (2013) Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem 64:481–505

    Article  CAS  Google Scholar 

  37. Harris GA, Galhena AS, Fernandez FM (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem 83(12):4508–4538

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Lammert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lammert, S.A. (2014). Field Portable Mass Spectrometry. In: Banoub, J. (eds) Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9238-7_6

Download citation

Publish with us

Policies and ethics