Skip to main content

Modern Sample Preparation Techniques for Gas Chromatography-Mass Spectrometry Analysis of Environmental Markers of Chemical Warfare Agents Use

  • Conference paper
  • First Online:
Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism

Abstract

The chapter introduces problematics of on-site chemical analysis in the investigations of past chemical warfare agents (CWA) events. An overview of primary environmental degradation pathways of CWA leading to formation of chemical markers of their use is given. Conventional and modern sample preparation approaches for on-site gas chromatography (GC) – mass spectrometry (MS) analysis of CWA and their degradation products in environmental sample matrices are presented. The advantages, disadvantages, and relative performance of the sample preparation techniques are discussed.

The views and recommendations in this article are those of authors and do not represent official OPCW or UvA/KWR Watercycle Research Institute policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidell FR, Takafuji ET, Franz DR (eds) (1997) Medical aspects of chemical and biological warfare, 1st edn. United States Government Printing, Office of the Surgeon General, Borden Institute, Washington, DC

    Google Scholar 

  2. Okumura T, Takasu N, Lshimatsu S, Miyanoki S, Mitsuhashi A, Kumada K, Tanaka K, Hinohara S (1996) Report on 640 victims of the Tokyo subway sarin attack. Ann Emerg Med 28:129

    Article  CAS  Google Scholar 

  3. De Voogt P, Jansson B (1993) Verticals and long range transport of persistent organics in the atmosphere. Rev Environ Contam Toxicol 132:1–27

    Article  Google Scholar 

  4. Bartelt-Hunt SL, Knappe DRU, Barlaz MA (2008) A review of chemical warfare agent simulants for the study of environmental behavior. Environ Sci Technol 38:112–136

    Article  CAS  Google Scholar 

  5. FM 3-6/FMFM 7-11-H/AFM 105-7, Field Behavior of NBC Agents (Including Smoke and Incendiaries), Department of the Army, Department of the Air Force, United States Marine Corps, Washington, DC, 3 Nov 1986

    Google Scholar 

  6. D’Agostino PA, Chenier CL (2006) Analysis of chemical warfare agents: general overview, LC-MS Review, InHouse LC-ESI-MS methods and open literature bibliography, Technical report DRDC Suffield TR 2006-022, Suffield, Canada

    Google Scholar 

  7. Bogusz MJ (ed) (2008) Handbook of analytical separations, vol 6, Forensic Science. Elsevier B.V, Amsterdam, pp 839–872

    Google Scholar 

  8. Inficon. http://www.inficonchemicalidentificationsystems.com/en/index.html. Cited 05 May 2013

  9. Torion. http://www.torion.com/products. Cited 05 May 2013

  10. FLIR. http://gs.flir.com/detection/chemical/mass-spec/griffin-460. Cited 05 May 2013

  11. Agilent Technologies. http://www.chem.agilent.com/en-US/products-services/Instruments-LTMSystems/Mass-Spectrometry/5975T-LTM-GC-MSD-System. Cited 05 May 2013.

  12. Gupta RC (ed) (2009) Handbook of toxicology of chemical warfare agents, 1st edn. Academic Press, San Diego, pp 98–99

    Google Scholar 

  13. Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) The sources, fate, and toxicity of chemical warfare agent degradation products. Environ Health Perspect 107(12):933–974

    Article  CAS  Google Scholar 

  14. Trapp R (1985) The detoxification and natural degradation of chemical weapon agents: SIPRI studies on chemical and biological weapons. Taylor & Francis Inc, Philadelphia, p 3

    Google Scholar 

  15. Hay A, Roberts G (1990) The use of poison gas against the Iraqi Kurds: analysis of bomb fragments, soil, and wool samples. JAMA 263(8):1065–1066

    Article  CAS  Google Scholar 

  16. Theobald N, Ruhl NP (1994) Chemical warfare agent munitions in the Baltic Sea. Deut Hydrographische Z 46:121–131

    Google Scholar 

  17. Jorgensen BS, Olesen B, Berntsen O (1985) Mustard gas accidents on Bornholm, Ugeskr. Laeger 28(147):2251–2254

    Google Scholar 

  18. Franke S (1967) Lehrbuch der Militärchemie, Band I: Chemie der Kampfstoffe. Deutscher Militärverlag, Berlin

    Google Scholar 

  19. Black RM (2008) An overview of biological markers of exposure to chemical warfare agents. J Anal Toxicology 32:2–9

    Article  CAS  Google Scholar 

  20. Reynolds ML, Little PJ, Thomas BFG, Bagley RB, Martin BR (1985) Relationship between the biodisposition of {3H} soman and its pharmacological effects in mice. Toxicol Appl Pharmacol 80

    Google Scholar 

  21. Epstein J, Callahan JJ, Bauer VE (1974) The kinetics and mechanisms of hydrolysis of phosphonothiolates in dilute aqueous solution. Phosphorus 4:157

    CAS  Google Scholar 

  22. Yang Y-C, Szafraniec LL, Beaudry WT, Rohrbaugh DK (1990) Oxidative detoxification of phosphonothiolates. J Am Chem Soc 1:6621

    Article  Google Scholar 

  23. Vanninen P (ed) (2011) Recommended operating procedures for analysis in the verification of chemical disarmament. The Ministry for Foreign Affairs of Finland, University of Helsinki, Finland, pp 124–125

    Google Scholar 

  24. Black RM, Muir B (2003) Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. J Chromatogr A 1000:253–281

    Article  CAS  Google Scholar 

  25. Sarafraz-Yazdi A, Amiri A (2010) Liquid phase microextraction. Trends Anal Chem 29:1

    Article  CAS  Google Scholar 

  26. Palit M, Pardasani D, Gupta AK, Dubey DK (2005) Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry. Anal Chem 77:711–717

    Article  CAS  Google Scholar 

  27. Park Y, Kim SK, Choi K, Son B, Park J, KangBull H (2009) Analysis of chemical warfare agents in water using single drop microextraction. Kor Chem Soc 30(1):49–52

    Article  CAS  Google Scholar 

  28. Dubey DK, Pardasani D, Gupta AK, Palit M, Kanaujia PK, Tak V (2006) Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water. J Chromatogr A 1107:29–35

    Article  CAS  Google Scholar 

  29. Lee HSN, Basheer C, Lee HK (2006) Determination of trace level chemical warfare agents in water and slurry samples using hollow fibre-protected liquid-phase microextraction followed by gas chromatography-mass spectrometry. J Chromatogr A 1124:91

    Article  CAS  Google Scholar 

  30. Lee HSN, Sng MT, Basheer C, Lee HK (2008) Determination of basic degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry. J Chromatogr A 1196–1197:125–132

    Article  Google Scholar 

  31. Palit M, Mallard G (2011) Dispersive derivatization liquid-liquid extraction of degradation products/precursors of mustards and V-agents from aqueous samples. J Chromatogr A 1218:5393–5400

    Article  CAS  Google Scholar 

  32. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 63:2145

    Article  Google Scholar 

  33. Sigma-Aldrich. http://www.sigmaaldrich.com/analytical-chromatography/sample-preparation/spme/selecting-spme-fiber.html. Cited on 19 June 2013

  34. Ng WF, Lakso H-Å (1997) Determination of chemical warfare agents in natural water samples by solid-phase microextraction. Anal Chem 69:1866–1872

    Article  Google Scholar 

  35. Sng MT, Ng WF (1999) In situ derivatisation of degradation products of chemical warfare agents in water by solid-phase microextraction and gas chromatographic-mass spectrometric analysis. J Chromatogr A 832:173–182

    Article  CAS  Google Scholar 

  36. Vanninen P (ed) Recommended operating procedures for analysis in the verification of chemical disarmament, The Ministry for Foreign Affairs of Finland, University of Helsinki, 2011, pp 163

    Google Scholar 

  37. Szostek B, Aldstadt JH (1998) J Chromatogr A 2(807):253–263

    Article  Google Scholar 

  38. Torion. http://www.torion.com/products/22. Page visited on 19 June 2013

  39. Popiel S, Sankowska M (2011) Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography. J Chromatogr A 47(1218):8457–8479

    Article  Google Scholar 

  40. Schneider JF, Boparai AS, Reed LL (2001) Screening for sarin in air and water by solid-phase microextraction-gas chromatography/mass spectrometry. J Chromatogr Sci 10(39):420–424

    Article  Google Scholar 

  41. Baltussen HA, Sandra PJF, David F, Cramers C (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J Microcolumn Sep 10(11):737–747

    Article  Google Scholar 

  42. Gerstel Application Note 8/2001

    Google Scholar 

  43. Blasco C, Fernández M, Picó Y, Font G (2004) Comparison of solid-phase microextraction and stir bar sorptive extraction for determining six organophosphorus insecticides in honey by liquid chromatography-mass spectrometry. J Chromatogr A 1030:77–85

    Article  CAS  Google Scholar 

  44. Stuff JR, Dupont Durst H (2002) Stir bar microextraction for detection of CW agents in liquid matrices. In: Unclassified report ECBC-TR-233. Edgewood Chemical Biological Center, Aberdeen Proving Ground (APG), MD, USA, May 2002

    Google Scholar 

  45. Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) Stir bar sorptive extraction and trace analysis of alkylphenols in water samples by thermal desorption with in tube silylation and gas chromatography-mass spectrometry. J Chromatogr A 1(1062):23–29

    Article  Google Scholar 

  46. Owens PK, Karlsson L, Lutz ESM, Andersson LI (1999) Molecular imprinting for bio- and pharmaceutical analysis. Trend Anal Chem 18:146–154

    Article  CAS  Google Scholar 

  47. Yan H, Row KH (2006) Characteristic and synthetic approach of molecularly imprinted polymer. Int J Mol Sci 7:155–178

    Article  CAS  Google Scholar 

  48. Owens PK, Karlsson L, Lutz ESM, Andersson LI (1999) Molecular imprinting for bio- and pharmaceutical analysis. Trends Anal Chem 18:146

    Article  CAS  Google Scholar 

  49. Lee HN (2008) Development and applications of novel solvent-minimized techniques in the determination of chemical warfare agents and their degradation products, Ph.D. thesis, National University of Singapore, Singapore

    Google Scholar 

  50. Pradhan S, Boopathi M, Kumar O, Baghel A, Pandey P, Mahato TH, Singh B, Vijayaraghavan R (2009) Molecularly imprinted nanopatterns for the recognition of biological warfare agent ricin. Biosens Bioelectron 25:592–598

    Article  CAS  Google Scholar 

  51. Malosse L, Buvat P, Adès D, Siove A (2008) Detection of degradation products of chemical warfare agents by highly porous molecularly imprinted microspheres. Analyst 133:588–595

    Article  CAS  Google Scholar 

  52. Le Moullec S, Begos A, Pichon V, Bellier B (2006) Selective extraction of organophosphorus nerve agent degradation products by molecularly imprinted solid-phase extraction. J Chromatogr A 1108:7–13

    Article  Google Scholar 

  53. Bossée A (2011) Overview on MIPs experiments at DGA MNRBC. In: Report of the Sixteenth Session of the Scientific Advisory Board, SAB-16/1. Organisation for the Prohibition of Chemical Weapons, The Hague

    Google Scholar 

  54. Terzic O (2010) Screening of degradation products, impurities and precursors of chemical warfare agents in water and wet or dry organic liquid samples by in-sorbent tube silylation followed by thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1217:4987–4995

    Article  CAS  Google Scholar 

  55. Terzic O, Swahn I, Cretu G, Palit M, Mallard G (2012) Gas chromatography-full scan mass spectrometry determination of traces of chemical warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes. J Chromatogr A 1225:182–192

    Article  CAS  Google Scholar 

  56. Alfeeli B, Taylor LT, Agah M (2010) Evaluation of Tenax TA thin films as adsorbent material for micro preconcentration applications. Microchem J 2(95):259–267

    Article  Google Scholar 

  57. Alfeeli B, Jain V, Johnson RK, Beyer FL, Hefli JR, Agah M (2011) Characterization of poly (2,6-diphenyl-p-phenylene oxide) films as adsorbent for microfabricated preconcentrators. Microchem J 2(98):240–245

    Article  Google Scholar 

  58. Rautio M (ed) (1987) Air monitoring as a means for the verification of chemical disarmament, Part III. Further development and testing of methods. Ministry for Foreign Affairs of Finland, Helsinki

    Google Scholar 

  59. Kaipainen A, Kostiainen O, Riekkola M (1992) Identification of chemical warfare agents in air samples using capillary column gas chromatography with three simultaneous detectors. J Microcol Sep 4:245

    Article  CAS  Google Scholar 

  60. Steinhanses J, Schoene K (1990) Thermal desorption-gas chromatography of some organophosphates and s-mustard after trapping on tenax. J Chromatogr 514:273

    Article  CAS  Google Scholar 

  61. Hancock JR, Peters GR (1991) Retention index monitoring of compounds of chemical defence interest using thermal desorption gas chromatography. J Chromatogr 538:249

    Article  CAS  Google Scholar 

  62. Carrick WA, Cooper DB, Muir B (2001) Retrospective identification of chemical warfare agents by high-temperature automatic thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 925:241

    Article  CAS  Google Scholar 

  63. Terzic O, Bartenbach S, de Voogt P (2013) Determination of Lewisites and their hydrolysis products in aqueous and multiphase samples by in-sorbent tube butyl thiolation followed by thermal desorption-gas chromatography-full scan mass spectrometry. J Chromatogr A 1304:34–41

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Terzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Terzic, O., de Voogt, P. (2014). Modern Sample Preparation Techniques for Gas Chromatography-Mass Spectrometry Analysis of Environmental Markers of Chemical Warfare Agents Use. In: Banoub, J. (eds) Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9238-7_4

Download citation

Publish with us

Policies and ethics