Skip to main content

Abstract

It is widely assumed that heat shock response system in eukaryotes is amazingly conserved. Thus, all described organisms possess one or several genes encoding transcription factors belonging to HSF family that recognize the same sequences (HSEs) in the promoters of various Hsps genes (Åkerfelt et al. 2010; Morimoto 1998; Wu 1995). Furthermore, HSF family members in different organisms contain two highly similar domains responsible for DNA-binding and heat-induced trimerization as described in detail in Chap. 3. HSF recognizes practically the same simple sequences within promoters of Hsp genes (GAANNTTCNNGAA) that usually present in several copies at a regular distance from the transcription start. Various lines of evidence demonstrated that Hsp70 gene promoter is able to efficiently function in the cells of phylogenetically distant organisms even belonging to different phyla. Thus, reporter constructs under the control of Drosophila melanogaster Hsp70 gene promoter were readily expressed in the cells of mosquito Aedes aegypti, silkworm Bombix mori transgenic strains and in sea urchin embryos (Berger et al. 1985; McMahon et al. 1984; Uhlirova et al. 2002). Furthermore, constructs with D. melanogaster Hsp70 regulatory region were efficiently transcribed in Xenopus oocytes, rat fibroblasts and monkey COS cells (Bienz and Pelham 1982; Burke and Ish-Horowicz 1982; Mirault et al. 1982; Voellmy and Rungger 1982). Importantly, all such constructs exhibited clear-cut heat-inducible pattern of expression in the cells of the foreign hosts, thus corroborating the presumed high conservatism of HS response in unrelated organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  PubMed  PubMed Central  Google Scholar 

  • Astakhova LN, Zatsepina OG, Przhiboro AA, Evgen’ev MB, Garbuz DG (2013) Novel arrangement and comparative analysis of hsp90 family genes in three thermotolerant species of Stratiomyidae (Diptera). Insect Mol Biol 22:284–296

    Article  PubMed  CAS  Google Scholar 

  • Atkinson PW, O’Brochta DA (1992) In vivo expression of two highly conserved Drosophila genes in Australian sheep blowfly, Lucilia cuprina. Insect Biochem Mol Biol 22:423–431

    Google Scholar 

  • Berger EM, Marino G, Torrey D (1985) Expression of Drosophila hsp 70-CAT hybrid gene in Aedes cells induced by heat shock. Somat Cell Mol Genet 11:371–377

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Pelham HRB (1982) Expression of a Drosophila heat-shock protein in Xenopus oocytes: conserved and divergent regulatory signals. EMBO J 1:1583–1588

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burke JE, Ish-Horowicz D (1982) Expression of Drosophila heat-shock genes is regulated in Rat-1 cells. Nucleic Acids Res 10:3821–3830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen B, Jia T, Ma R, Zhang B, Kang L (2011) Evolution of hsp70 gene expression: a role for changes in AT-richness within promoters. PLoS One 6:e20308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garbuz DG, Zatsepina OG, Przhiboro AA, Yushenova I, Guzhova IV, Evgen’ev MB (2008) Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up-regulation of heat shock proteins and high thermotolerance. Mol Ecol 17:4763–4777

    Article  PubMed  CAS  Google Scholar 

  • Garbuz DG, Yushenova IA, Zatsepina OG, Przhiboro AA, Bettencourt BR, Evgen’ev MB (2011) Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera) inhabiting thermally contrasting environments. BMC Evol Biol 11:74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Georgel PT (2005) Chromatin potentiation of the hsp70 promoter is linked to GAGA-factor recruitment. Biochem Cell Biol 83:555–565

    Article  PubMed  CAS  Google Scholar 

  • Gong WJ, Golic KG (2004) Genomic deletions of the Drosophila melanogaster Hsp70 genes. Genetics 168:1467–1476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hart C, Zhao K, Laemmli U (1997) The scs’ boundary element: characterization of boundary element-associated factors. Mol Cell Biol 17:999–1009

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hashikawa N, Mizukami Y, Imazu H, Sakurai H (2006) Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. J Biol Chem 281:3936–3942

    Article  PubMed  CAS  Google Scholar 

  • Hernández G, Vázquez-Pianzola P, Sierra JM, Rivera-Pomar R (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10:1783–1797

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalosaka K, Chrysanthis G, Rojas-Gill AP, Theodoraki M, Gourzi P et al (2006) Evaluation of the activities of the medfly and Drosophila hsp70 promoters in vivo in germ-line transformed medflies. Insect Mol Biol 15:373–382

    Article  PubMed  CAS  Google Scholar 

  • Kostyuchenko M, Savitskaya E, Koryagina E, Melnikova L, Karakozova M, Georgiev P (2009) Zeste can facilitate long-range enhancer-promoter communication and insulator bypass in Drosophila melanogaster. Chromosoma 118:665–674

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McMahon AP, Novak TJ, Britten RJ, Davidson EH (1984) Inducible expression of a cloned heat shock fusion gene in sea urchin embryos. Proc Natl Acad Sci U S A 81:7490–7494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mirault ME, Southgate R, Delwart E (1982) Regulation of heat shock genes: a DNA sequence up-stream of Drosophila hsp70 genes is essential for their induction in monkey cells. EMBO J 1:1279–1285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcription response: cross talk between a family of HSFs, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  PubMed  CAS  Google Scholar 

  • Omelina ES, Baricheva EM, Oshchepkov DY, Merkulova TI (2011) Analysis and recognition of the GAGA transcription factor binding sites in Drosophila genes. Comput Biol Chem 35:363–370

    Article  PubMed  CAS  Google Scholar 

  • Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134:74–84

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sheikh MS, Fornace AJ (1999) Regulation of translation following stress. Oncogene 18:6421–6428

    Google Scholar 

  • Tian S, Haney RA, Feder ME (2010) Phylogeny disambiguates the evolution of heat-shock cis-regulatory elements in Drosophila. PLoS One 5:e10669

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlirova M, Asahina M, Riddiford LM, Jindra M (2002) Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev Genes Evol 212:145–151

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov HA, Karaev KK, Lyashko VN, Evgen’ev MB (1993) Heat-shock response in camel (Camelus dromedarius) blood cells and adaptation to hyperthermia. Comp Biochem Physiol B 106:867–872

    PubMed  CAS  Google Scholar 

  • Voellmy R, Rungger D (1982) Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes. Proc Natl Acad Sci U S A 79:1776–1780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilkins RC, Lis JT (1998) GAGA factor binding to DNA via a single tinucleotide sequence element. Nucleic Acids Res 26:2672–2678

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Mizukami Y, Sakurai H (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280:11911–11919

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evgen’ev, M.B., Garbuz, D.G., Zatsepina, O.G. (2014). Fine Tuning of the HSR in Various Organisms. In: Heat Shock Proteins and Whole Body Adaptation to Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9235-6_7

Download citation

Publish with us

Policies and ethics